Преобразовательная техника

100

раздел электротехники (См. Электротехника), предметом которого является разработка способов и средств преобразования электрической энергии. Совокупность соответствующих преобразовательных устройств. Устройства П. Т. Изменяют величины переменных напряжения и тока (Трансформаторы), преобразуют переменный ток в постоянный или пульсирующий однонаправленный (выпрямители (См. Выпрямительный электроизмерительный прибор)), постоянный или пульсирующий однонаправленный ток в переменный (Инверторы), переменный ток одной частоты в переменный ток другой частоты (преобразователи частоты (См. Преобразователь частоты)), изменяют число фаз переменного тока (Расщепитель фаз), изменяют величину постоянного напряжения (регуляторы и преобразователи постоянного напряжения).

К устройствам П. Т. Относят также бесконтактные коммутационные аппараты (см. Коммутатор). В зависимости от вида основных элементов силовых цепей преобразовательных устройств последние подразделяют на электромашинные и статические (электромагнитные и вентильные). К электромашинным преобразовательным устройствам относят трансформаторы и электромашинные преобразователи частоты. Трансформаторы применяют в цепях переменного тока везде, где необходимо повысить или понизить напряжение, согласовать выход одной системы со входом другой, ввести гальваническую развязку электрических цепей и т.д. Электромашинные преобразователи (главным образом двигатель-генераторные агрегаты (См. Двигатель-генераторный агрегат)) применяют преимущественно в автономных системах электроснабжения и в некоторых промышленных Электроприводах.

Электромагнитные преобразователи применяются редко, преимущественно в качестве делителей и умножителей частоты. Вентильные преобразовательные устройства (ВПУ), основной элемент которых — Вентиль электрический, имеют малую инерционность, высокий кпд, хорошие эксплуатационные характеристики, малые массу и габариты, что и обусловило их широкое применение. В высоковольтных ВПУ малой и средней мощности применяют электронные (электровакуумные) вентили. Ионные вентили (газоразрядные и ртутные) устанавливают в ВПУ с резко переменной нагрузкой, в импульсных и специальных ВПУ. Полупроводниковые (ПП) вентили (Транзисторы, полупроводниковые диоды (См. Полупроводниковый диод) и Тиристоры) благодаря компактности, мгновенной готовности к работе, высокому кпд, простоте управления и большому сроку службы к середине 70-х гг.

20 в. Практически полностью вытеснили др. Вентили в ВПУ массового применения. В низковольтных ВПУ малой и средней мощности (Преобразовательная техника 102—103 вт) используют транзисторы, работающие в ключевом режиме. В ВПУ большой мощности (Преобразовательная техника 105—108 вт) применяют силовые ПП диоды и тиристоры. В состав ВПУ, кроме вентилей с охладителями, входят трансформаторы, система управления вентилями, устройства защиты от сверхтоков и перенапряжений, ограничители скорости нарастания напряжения и тока в силовых цепях, коммутирующие устройства, сглаживающие фильтры. По режиму рабочего процесса различают ВПУ с естественной и искусственной (принудительной) коммутацией (См. Коммутация). Естественная коммутация может быть реализована в ВПУ как с управляемыми, так и с неуправляемыми вентилями.

Искусственная коммутация осуществляется, как правило, в ВПУ с управляемыми вентилями. В ВПУ обоих видов вентиль переводится в состояние высокой проводимости (отпирается) управляющим сигналом при наличии соответствующих потенциалов на его силовых электродах. В состояние низкой проводимости вентиль переводится (запирается) либо в результате снижения напряжения источника питания (в ВПУ с естественной коммутацией), либо дополнительным воздействием коммутирующего устройства (в ВПУ с искусственной коммутацией). Схема простейшего ВПУ — выпрямителя— показана на рис. 1, а. Изменяя момент отпирания управляемого вентиля, соединённого последовательно с нагрузкой, можно менять среднее значение приложенного к нагрузке выпрямленного напряжения (фазовое регулирование, рис.

1, б). Изменяя частоту подачи управляющих импульсов, также можно менять среднее значение выпрямленного напряжения (импульсное регулирование, рис. 1, б). В ВПУ с естественной коммутацией вентиль запирается тогда, когда протекающий через него ток уменьшается до нуля. В ВПУ с искусственной коммутацией вентиль может быть заперт коммутирующим устройством в любой момент времени (кривая изменения напряжения на нагрузке изображена на рис. 1, г). В выпрямителях такой способ управления режимом работы вентиля по сравнению с фазовым регулированием позволяет повысить коэффициент мощности на входе ВПУ. Для уменьшения пульсаций выпрямленного напряжения обычно используют сглаживающие фильтры на выходе ВПУ. С этой же целью применяют несколько включенных параллельно ВПУ, питаемых переменными напряжениями, сдвинутыми друг относительно друга по фазе.

В ВПУ — преобразователе частоты (рис. 2, а), подавая управляющие импульсы попеременно на вентили B1 и B2 (для положительной полуволны тока нагрузки) и B3, B4 (для отрицательной полуволны тока нагрузки) с частотой, более низкой, чем частота питающей сети, можно получить (при естественной коммутации) напряжение, идеализированная форма которого показана на рис. 2, б. В ВПУ с искусственной коммутацией можно получить переменное напряжение, частота которого может быть выше частоты питающей сети (рис. 2, в) и ограничивается лишь динамическими свойствами вентилей. Для изменения среднего значения выходного напряжения и в этом случае применяется фазовое или импульсное регулирование. Включая ВПУ в цепь постоянного тока и изменяя с помощью искусственной коммутации продолжительность отпертого и запертого состояний силового вентиля (рис.

3, а), можно менять среднее напряжение на нагрузке методом широтно-импульсного (рис. 3, б) или частотно-импульсного (рис. 3, в) регулирования. Посредством соединения двух ВПУ можно осуществлять преобразование постоянного тока в переменный (инвертирование). В СССР и за рубежом ВПУ применяют практически во всех областях электроэнергетики. В электропередачах постоянного тока с напряжением 500 кв и более используют выпрямители и инверторы на ртутных и ПП вентилях мощностью по 100 Мва и выше. Мощность ПП выпрямителей для питания электролизных ванн достигает 100 Мва. В электроприводах прокатных станов и блюмингов ещё встречаются ртутные выпрямители мощностью до 30 Мва, но с начала 70-х гг. Их всё чаще заменяют ПП выпрямителями.

На электрифицированном ж.-д. Транспорте применяют выпрямительные и выпрямительно-инверторные установки мощностью до 10 Мва на подвижном составе и до 15 Мва на тяговых подстанциях (См. Тяговая подстанция). В электроприводах металлорежущих станков и текстильных машин используют ПП выпрямители и преобразователи частоты мощностью от 10 ква до 10 Мва. Для питания индукционных электрических печей применяют ПП преобразователи частоты мощностью до 1 Мва. В тихоходных электроприводах шахтных мельниц используют ртутные и ПП преобразователи частоты мощностью 10—15 Мва причём ртутные также постепенно вытесняются ПП. Лит. Ривкин Г. А., Преобразовательные устройства, М., 1970. Чиженко И. М., Руденко В. С., Сенько В. И., Основы преобразовательной техники, М., 1974.

Ю. М. Иньков, А. А. Сакович. Рис. 1. Схема полупроводникового вентильного выпрямителя (а) и диаграммы его напряжений (б, в, г). Uc — напряжение сети. Uн — напряжение на нагрузке. Ucp — среднее значение выпрямленного напряжения. ВПУ — вентильное преобразовательное устройство. В — управляемый вентиль. УИК — устройство искусственной коммутации. Rн — нагрузка. Рис. 2. Схема полупроводникового вентильного преобразователя частоты (а) и диаграммы его напряжений (б, в). T1 — период напряжения сети. Т2, Т — период напряжения на нагрузке. Остальные обозначения те же, что и на рис. 1. Рис. 3. Схема полупроводникового вентильного регулятора постоянного тока (а) и диаграммы его напряжений (б, в). Т — интервалы следования управляющих импульсов (на отпирание вентиля).

T — продолжительность открытого состояния вентиля. Остальные обозначения те же, что и на рис. 1..

Значения в других словарях
Преобразователь частоты

1) в электротехнике — устройство для изменения частоты электрического напряжения (тока). Применяется в системах питания регулируемого электропривода и магнитных усилителей, для согласования двух или более систем переменного тока с различной частотой и т.д. Различают П. Ч. Статические (ПС), электромашинные (ПЧМ) и комбинированные. ПС разделяют в свою очередь на электромагнитные (ПЧЭ) и вентильные (ПЧВ). Действие ПЧЭ основано на изменении формы переменного синусоидального напряжения при помощи ма..

Преобразовательная подстанция

Подстанция электрическая для преобразования электрического тока, преимущественно по частоте и числу фаз. Трёхфазный ток промышленной частоты, вырабатываемый Электростанциями, на П. П. Преобразуется в постоянный ток — например для питания мощных электролизных установок, регулируемых электроприводов станков и прокатных станов, гальванических ванн, контактных сетей электрифицированного транспорта и т.п., в переменный ток пониженной или повышенной частоты (по отношению к промышленной) — для питания..

Преобразовательное скрещивание

то же, что Поглотительное скрещивание. ..

Препаровка

препарирование (от лат. Praeparo — приготовляю), обработка животных и растений, в том числе ископаемых, с целью изготовления препаратов для изучения этих организмов. В зависимости от объектов и задач П. Может быть различной. При анатомической П. Животных вскрывают, растения расчленяют, и отдельные органы или их системы помещают в фиксирующие жидкости. Для изготовления тотальных препаратов органы животных расправляют, окрашивают, кровеносную и дыхательную системы заполняют легко застывающими мас..

Преобразовательная Техника

ПРЕОБРАЗОВАТЕЛЬНАЯ ТЕХНИКА - 1) раздел электротехники, охватывающий вопросы разработки способов и средств преобразования электрического тока (по напряжению, частоте, фазе и т. П.).2) Совокупность электротехнических преобразовательных устройств. Трансформаторов, выпрямителей, инверторов, преобразователей частоты, расщепителей фаз и т. П.. ..

Преобразовательная Техника

1) раздел электротехники, охватывающий вопросы разработки способов и средств преобразования электрического тока (по напряжению, частоте, фазе и т. П.). 2) Совокупность электротехнических преобразовательных устройств. Трансформаторов, выпрямителей, инверторов, преобразователей частоты, расщепителей фаз и т. П.. ..

Преобразовательная Техника

Раздел электротехники, предметом к-рого является разработка способов и средств преобразования электрич. Тока (по напряжению, частоте, фазе и т. П.), а также совокупность соответствующих преобразовав устройств. Устройства П. Т. Преобразуют перем. Ток в постоянный или пульсирующий однонаправленный (выпрямители), пост. Или пульсирующий однонаправленный ток в переменный (инверторы), перем. Ток одной частоты в перем. Ток другой частоты (преобразователи частоты), изменяют число фаз перем. Тока (расщеп..

Преобразовательная техника

совокупность устройств для преобразования электрического тока, напряжения, частоты, фазы. Раздел электротехники, предметом которого является разработка способов и средств для таких преобразований. Устройства преобразовательной техники изменяют величину напряжения и тока (трансформаторы электрические), преобразуют переменный ток в постоянный (выпрямители электрические) и постоянный ток в переменный (инверторы), изменяют частоту (преобразователи частоты), изменяют число фаз переменного тока (расщ..

Дополнительный поиск Преобразовательная техника Преобразовательная техника

Добавить комментарий
Комментарии
Комментариев пока нет

На нашем сайте Вы найдете значение "Преобразовательная техника" в словаре Большая Советская энциклопедия, подробное описание, примеры использования, словосочетания с выражением Преобразовательная техника, различные варианты толкований, скрытый смысл.

Первая буква "П". Общая длина 26 символа