Правило фаз*

73

(хим.) — неоднородность любой химической системы, находящейся в равновесии, может обуславливаться только одновременным присутствием в ней различных однородных тел, взаимно соприкасающихся. Таков, напр., случай твердой соли и находящегося над ней насыщенного раствора и т. Д. Отдельные, однородные тела, из которых сложена система, могут быть в газообразном, жидком или твердом состояниях. Число твердых тел и число взаимно не растворяющихся жидкостей, которые принимают участие в равновесии, не подлежит какому-либо ограничению. Что касается паро- или газообразных тел, то благодаря способности их смешиваться во всех отношениях, паро- или газообразный комплекс, входящий в систему, должен быть всегда в единственном числе.

Гиббс предложил называть фазами те физически и химически одпородные массы (иначе, массы однородной концентрации), из которых сложена данная неоднородная равновесная система. Фазами могут быть потому и физич. Смеси, и химически однородные тела. Число их, следовательно, не всегда совпадает с числом химических тел, которые могут быть выделены из данной системы. Так, всякий раствор, будет ли он твердый (см. Растворы), жидкий или газообразный, представляет собой отдельную фазу, за химические же тела (простые или сложные), ее образующие, мы должны принимать исключительно те, концентрация которых может быть произвольно изменена. Напр., при рассмотрении равновесия между углекальциевой солью, окисью кальция и углекислым газом, за тела, слагающие данную систему мы должны принять СО 2 и СаО, потому что их концентрация может быть произвольно изменяема и их двух вполне достаточно для образования всех тут возможных равновесных систем (ср., что сказано ниже при двух реагирующих телах).

Нельзя принять за слагающие сами элементы кальций, кислород и углерод, так как они не представляют независимых переменных и, что не менее важно — не находятся в равновесии с данной системой [Paзличиe числа не зависимых друг от друга тел, образующих данную равновесную систему, от числа химических индивидуумов, в ней могущих содержаться, еще яснее выступает на следующем примере. Положим, что в воде растворены одновременно хлористый калий и бромистый натрий, в силу двойного разложения они дадут некоторые количества бромистого калия и хлористого натрия. Нетрудно убедиться, что несмотря на присутствие четырех солей, мы имеем дело всего с тремя независимыми переменными (предполагая концентрацию первоначально взятых солей определенной).

Действительно, представим себе, что количества КСl, КВr и NaCl нами установлены, количество неизмененного NaBr, очевидно, будет тем самым косвенно определено. Оно не является, следовательно, независимым. К тому же заключению приводит и то соображение, что достаточно в данном случае трех аналитических данных (напр., определений количеств K, Cl, Br), чтобы иметь возможность вычислить четвертое неизвестное (содержание Na, Мейергоффер). Аналогичные соображения позволяют обходиться, не прибегая к теории электролитической диссоциации, при изложении с точки зрения П. Фаз случаев равновесия водных растворов солей (Банкрофт).]. Гиббсу (Gibbs) принадлежит положение, что в системах, находящихся под равномерным влиянием тяготения, электрического, капиллярного или какого-либо иного натяжения, — состояние фаз определяется.

Давлением и температурой системы и химическими потенциалами тел, из которых она (система) сложена. При равновесии — потенциал данного тела, находящегося в различных фазах, обладает определенной постоянной величиной, и потому. 1) для любой фазы мы можем составить уравнение, которое будет связывать эти величины между собой, и 2) для каждой другой фазы, находящейся в равновесии с первой, будем иметь такого же вида уравнение, содержащее те же переменные. Несмотря на то, что неизвестны ни эти отдельные уравнения, ни химические потенциалы участвующих в данной системе тел, все же эти соображения позволили Гиббсу вывести вполне определенные заключения о характере и числе возможных случаев равновесия при неизвестном числе тел, участвующих в образовании системы.

Действйтельно, число независимых переменных для n тел, по определению равно "n + 2" (n химических потенциалов + температура + давление), а следовательно, число теоретических уравнений равно числу переменных только при наличности "n + 2" фаз. Это число фаз является, кроме того, максимальным для n не зависимых друг от друга химических тел. Только в этом случае все переменные имеют вполне определенное численное значение, иначе говоря, сосуществование "n + 2" фаз влечет за собой определенное соотношение между температурой и давлением. Такие системы, не обладающие степенью свободы (Рике), Тревор называет безвариантными (nonvariant system). Если условиться откладывать температуры по оси абсцисс прамоугольных координат, а по оси ординат — давления, то в плоскости координат всегда можно найти такую точку, которая будет изображать состояние системы, сложенной из n тел и имеющей "n + 2" фаз.

Эту точку принято называть "инверсионной", или "точкой обращения" (Фан'т-Гофф). Когда при n реагирующих телах имеется налицо только "n + 1" фаз, то число неизвестных превышает на единицу число уравнений, которые можно для нее построить, и система оказывается обладающей одной степенью свободы, моновариантной (по Тревору — monovariant system). Для такой системы величина одной из переменных, или температуры, или давления, может быть произвольно выбрана. Ряду данных температур будут в ней отвечать вполне определенные давления, и наоборот, определенные давления возможны будут только при определенных температурах. В диаграмме температур и давлений такой системе будет отвечать уже не точка, а кривая линия. Если представить себе, что из сосуществующих при инверсионной точке "n + 2" фаз по очереди будет исчезать какая-нибудь из них, то, очевидно, мы получим в координатной плоскости "n + 2" кривых, которые все будут пересекаться при "точке обращения".

Система из n тел, образованная n фазами, называется дивариантной (divariant system). Две переменные могут быть в ней заранее выбраны, и в диаграмме температур и давлений такой системе отвечает определенная площадь, границы которой определяются кривыми моновариантных систем. В дивариантной системе при данной температуре можно иметь (при соответственных изменениях концентраций) целый ряд давлений. При данном давлении температура может меняться в зависимости от концентрации, или наоборот, концентрация может меняться с изменением температуры и т. Д. Наконец, системы из n слагаемых (реагирующих тел), состоящия из n — 1, n — 2 и т. Д. Фаз называются три-, тетравариантными и т. Д. (trivariant, tetravariant system). Число степеней свободы, очевидно, возрастает по мере увеличения числа реагирующих тел, сравнительно с числом фаз.

На практике иcследование три- и т. Д. Вариантных систем не представляет интереса благодаря их малой определенности и слишком большому числу возможных комбинаций. Системы, обнимаемые П. Фаз, подчинены, как равновесные, общему закону Ле-Шателье, по которому, "всякие изменения внешних факторов равновесия влекут за собой обратные изменения внутри системы" (см. Обратимость химических реакций), а именно. 1) нарастание температуры вызывает в системе превращение, стремящееся понизить температуру, поглощающее, следовательно, тепло, и обратно, и 2) всякое увеличение внешнего давления вызывает такое перемещение равновесия, которое влечет за собой понижение давления, состоящее, следовательно, в уменьшении объема системы, и обратно.

Следующие частные случаи наглядно поясняют вышеизложенное.I. Одно реагирующее тело (вода, бензол, сера, фосфор). При одном реагирующем теле (т. Е. При n = 1) максимальное число для сосуществующих фаз равно 1 + 2 = 3. Это число, отвечающее безвариантной системе, возможно только при температуре и давлении, отвечающих инверсионной точке. При всяких же других величинах температуры и давления могут сосуществовать уже maximum n + 1, т. Е. 2 фазы. В диаграмме температур и давлений инверсионная точка должна представлять точку пересечения трех пограничных кривых для трех возможных моновариантных систем. Фиг. 1, схематически изображающая равновесие для воды в ее различных физических видоизменениях, все это ясно показывает.Фиг.

1. А есть инверсионная точка, в которой может одновременно существовать вода в трех видах (фазах). Вода газообразная (вернее, парообразная), вода жидкая и твердая (лед). Температура, отвечающая ей = + 0,0075°С, а давление = 4,57 мм (см. Вода и Лед). Стоит хотя бы незначительно изменить или температуру, или давление, чтобы тотчас вызвать вполне определенное превращение в системе, состоящее в исчезновении одной из фаз. Так, если мы будем уменьшать температуру системы, то исчезнет жидкая вода и останется система из льда и пара. Давление испаряющегося льда будет меняться — падать с падением температуры, но так как лед может существовать (ниже точки А) при различных температурах и давлениях, то, очевидно, равновесие между ним и паром должно выражаться кривой АО (фиг.

1). Экспериментально она прослежена для очень малого участка температур, теоретические же соображения заставляют предполагать, что эта кривая должна кончаться в нулевой точке координат, т. Е. При абсолютном нуле температуры (при — 273°С, Нернст). Это обозначено пунктиром. Кривая ОА есть вместе с тем кривая возгонки льда (ср. Пар) или максимального его давления. Диаграмма ясно показывает, что если при постоянной температуре над системой из льда и пара уменьшать давление, то этого нельзя сделать, пока еще остается хоть небольшое количество льда, и только после полного испарения его давление может быть понижено. И наоборот, повышение давления невозможно, пока еще над льдом данной температуры имеется пространство, наполненное паром.

Если повышать температуру системы (выше инверсионной точки А), то должна исчезнуть фаза льда, и рассуждениями, вполне подобными только что изложенным, нетрудно прийти к выводу, что кривая АС есть кривая максимальной упругости паров воды в присутствии жидкой воды, т. Е. Так называемых насыщенных паров (см. Вода). Ниже нее лежиг область пара ненасыщенного или перегретого (см. Вода), непосредственно выше — область жидкой воды. Относительно пограничных точек кривой АС надо заметить следующее. Как показано пунктиром, она может быть экспериментально прослежена на некотором расстоянии ниже точки А, где кривая DA отвечает упругости переохлажденной воды (ср. Лед и Пар), но современные сведения не позволяют решить, отвечает ли ее конец какому-нибудь определенаому физическому изменению воды, или же кривая точно так же должна окончиться в нулевой точке координат (Нернст), т.

Е. Не должна ли диаграмма иметь вид, представленный на фиг. 2. Справа кривая АС имеет, напротив, вполне твердо установленное окончание, и именно абсцисса точки С представляет так называемую критическую температуру воды, а ее ордината давление при критической температуре, т. Е. 365° и 200 атм. (Кальете и Колардо). При температурах выше критической жидкая вода нсчезает, превращаясь нацело в газообразную. Моновариантная система (вода — насыщенный пар) сменяется, следовательно, дивариантной (критическая точка та, при которой две фазы становятся тождественными. Оствальд), для которой могут быть по произволу выбраны величины давления и температуры, что и показано расходящимися из точки С пунктирными прямыми (фиг. 1), которые изображают наблюденные Кальете и Колардо давления газообразной воды в зависимости от количества ее, подвергавшегося нагреванию.

Прямой ход их показывает, что и при этих высоких температурах и давлениях газообразная вода еще довольно близко следует закону Гей-Люссака для расширения газов. Может ли быть газ переохлажден ниже критической температуры и будет ли он тогда обладать каким-нибудь оиределенным давлением, — до сих пор не решенный вопрос. Согласно П. Фаз величины температуры и давления в однородных, дивариантных системах могут быть выбраны по произволу, а ход кривой при данной массе вещества находится в зависимости от его концентрации, т. Е. От объема, занятого им [В этом отношении диаграмма, приведенная Банкрофтом в его сочинении "The Phase Rate", является, несомненно, ошибочной.]. С кривыми ОА и AC в точке А пересекается еще третья кривая АВ.

Она отвечает равновесию между льдом и водой при отсутствии газообразной фазы, следоватольно, под давлением. Как видно по нанесенной пунктиром вертикальной линии NN1N2, кривая AB отклоняется влево, что происходит потому, что лед обладает меньшим уд. Весом, чем вода, и с увеличением давления температура плавления льда понижается (кривая, благодаря уменьшению абсциссы, должна приближаться к оси y -ов). Пунктирные прямые ММ 1 М 2 и NN1N2, из которых первая параллельна оси х-ов, а вторая оси у-ов, легко позволяют ориентироваться в тех изменениях, которым должна подвергаться исследуемая система в одном случае при изменении только температуры (след., при постоянном давлении), а в другом при изменении давления (при постоянной температуре).

Ясно, что если при постоянном давлении понижать температуру газообразной (парообразной) воды, то, пока температура не понизится до М 1, будут иметься налицо условия моновариантной системы. В точке M2 она превратится в безвариантную (жидкость + определенное давление + насыщенный пар), затем снова в моновариантную (отрезок М 1 М 2 отвечает жидкой воде + определенному давлению), которая в M2 становится безвариантной (жидкая вода + лед + определенное давление) и т. Д. В точках М 1 и М 2 как нетрудно видеть, должны происходить остановки в ходе температуры до полного исчезновения в M1 газообразной фазы, а в M2 — жидкой. Одинаково понятно, что на прямой NN1N2.

Значения в других словарях
Правило модулей

См. Растворы.. ..

Правило Фаз

См. Фаз закон.. ..

Правильная печь

См. Стеклянное производство.. ..

Правильная система

(кубическая, тессеральная) — обнимает собой совокупность кристаллов, в которой имеются три единственных в своем роде взаимно перпендикулярных между собой равных направления, проходящих через центр кристалла. Эти три линии соединяют три пары взаимно противоположных одинаковых элементов огранения, которые находятся в кристалле только в количестве трех пар. Указанные направления являются в то же время осями симметрии 4-го или 2-го порядков (смотря по степени симметрии). Совместив с ними координатны..

Дополнительный поиск Правило фаз* Правило фаз*

Добавить комментарий
Комментарии
Комментариев пока нет

На нашем сайте Вы найдете значение "Правило фаз*" в словаре Энциклопедия Брокгауза и Ефрона, подробное описание, примеры использования, словосочетания с выражением Правило фаз*, различные варианты толкований, скрытый смысл.

Первая буква "П". Общая длина 12 символа