Сверхвысоких Частот Диапазон

156

Частотный диапазон электромагнитного излучения (100е300 000 млн. Герц), расположенный в спектре между ультравысокими телевизионными частотами и частотами дальней инфракрасной области. Этот частотный диапазон соответствует длинам волн от 30 см до 1 мм. Поэтому его называют также диапазоном дециметровых и сантиметровых волн. В англоязычных странах он называется микроволновым диапазоном. Имеется в виду, что длины волн очень малы по сравнению с длинами волн обычного радиовещания, имеющими порядок нескольких сотен метров. Так как по длине волны излучение СВЧ-диапазона является промежуточным между световым излучением и обычными радиоволнами, оно обладает некоторыми свойствами и света, и радиоволн. Например, оно, как и свет, распространяется по прямой и перекрывается почти всеми твердыми объектами.

Во многом аналогично свету оно фокусируется, распространяется в виде луча и отражается. Многие радиолокационные антенны и другие СВЧ-устройства представляют собой как бы увеличенные варианты оптических элементов типа зеркал и линз. В то же время СВЧ-излучение сходно с радиоизлучением вещательных диапазонов в том отношении, что оно генерируется аналогичными методами. К СВЧ-излучению применима классическая теория радиоволн, и его можно использовать как средство связи, основываясь на тех же принципах. Но благодаря более высоким частотам оно дает более широкие возможности передачи информации, что позволяет повысить эффективность связи. Например, один СВЧ-луч может нести одновременно несколько сотен телефонных разговоров.

Сходство СВЧ-излучения со светом и повышенная плотность переносимой им информации оказались очень полезны для радиолокационной и других областей техники.ПРИМЕНЕНИЕ СВЧ-ИЗЛУЧЕНИЯРадиолокация. Волны дециметрово-сантиметрового диапазона оставались предметом чисто научного любопытства до начала Второй мировой войны, когда возникла настоятельная необходимость в новом и эффективном электронном средстве раннего обнаружения. Только тогда начались интенсивные исследования СВЧ-радиолокации, хотя принципиальная ее возможность была продемонстрирована еще в 1923 в Научно-исследовательской лаборатории ВМС США. Суть радиолокации в том, что в пространство испускаются короткие, интенсивные импульсы СВЧ-излучения, а затем регистрируется часть этого излучения, вернувшаяся от искомого удаленного объекта - морского судна или самолета.

См. Также РАДИОЛОКАЦИЯ.Связь. Радиоволны СВЧ-диапазона широко применяются в технике связи. Кроме различных радиосистем военного назначения, во всех странах мира имеются многочисленные коммерческие линии СВЧ-связи. Поскольку такие радиоволны не следуют за кривизной земной поверхности, а распространяются по прямой, эти линии связи, как правило, состоят из ретрансляционных станций, установленных на вершинах холмов или на радиобашнях с интервалами ок. 50 км. Параболические или рупорные антенны, смонтированные на башнях, принимают и передают дальше СВЧ-сигналы. На каждой станции перед ретрансляцией сигнал усиливается электронным усилителем. Поскольку СВЧ-излучение допускает узконаправленные прием и передачу, для передачи не требуется больших затрат электроэнергии.

Хотя система башен, антенн, приемников и передатчиков может показаться весьма дорогостоящей, в конечном счете все это с лихвой окупается благодаря большой информационной емкости СВЧ-каналов связи. Города Соединенных Штатов соединены между собой сложной сетью более чем из 4000 ретрансляционных СВЧ-звеньев, образующих систему связи, которая простирается от одного океанского побережья до другого. Каналы этой сети способны пропускать тысячи телефонных разговоров и многочисленные телевизионные программы одновременно.Спутники связи. Система ретрансляционных радиобашен, необходимая для передачи СВЧ-излучения на большие расстояния, может быть построена, конечно, только на суше. Для межконтинентальной же связи требуется иной способ ретрансляции.

Здесь на помощь приходят связные искусственные спутники Земли. Выведенные на геостационарную орбиту, они могут выполнять функции ретрансляционных станций СВЧ-связи. Электронное устройство, называемое активно-ретрансляционным ИСЗ, принимает, усиливает и ретранслирует СВЧ-сигналы, передаваемые наземными станциями. Первые экспериментальные ИСЗ такого типа ("Телстар", "Релэй" и "Синком") успешно осуществляли уже в начале 1960-х годов ретрансляцию телевизионного вещания с одного континента на другой. На основе этого опыта были разработаны коммерческие спутники межконтинентальной и внутренней связи. Спутники последней межконтинентальной серии "Интелсат" были выведены в различные точки геостационарной орбиты таким образом, что зоны их охвата, перекрываясь, обеспечивают обслуживание абонентов во всем мире.

Каждый спутник серии "Интелсат" последних модификаций предоставляет клиентам тысячи каналов высококачественной связи для одновременной передачи телефонных, телевизионных, факсимильных сигналов и цифровых данных.Термообработка пищевых продуктов. СВЧ-излучение применяется для термообработки пищевых продуктов в домашних условиях и в пищевой промышленности. Энергия, генерируемая мощными электронными лампами, может быть сконцентрирована в малом объеме для высокоэффективной тепловой обработки продуктов в т.н. Микроволновых или СВЧ-печах, отличающихся чистотой, бесшумностью и компактностью. Такие устройства применяются на самолетных бортовых кухнях, в железнодорожных вагонах-ресторанах и торговых автоматах, где требуются быстрые подготовка продуктов и приготовление блюд.

Промышленность выпускает также СВЧ-печи бытового назначения.Научные исследования. СВЧ-излучение сыграло важную роль в исследованиях электронных свойств твердых тел. Когда такое тело оказывается в магнитном поле, свободные электроны в нем начинают вращаться вокруг магнитных силовых линий в плоскости, перпендикулярной направлению магнитного поля. Частота вращения, называемая циклотронной, прямо пропорциональна напряженности магнитного поля и обратно пропорциональна эффективной массе электрона. (Эффективная масса определяет ускорение электрона под воздействием какой-либо силы в кристалле. Она отличается от массы свободного электрона, которой определяется ускорение электрона под действием какой-либо силы в вакууме.

Различие обусловлено наличием сил притяжения и отталкивания, с которыми действуют на электрон в кристалле окружающие атомы и другие электроны.) Если на твердое тело, находящееся в магнитном поле, падает излучение СВЧ-диапазона, то это излучение сильно поглощается, когда его частота равна циклотронной частоте электрона. Данное явление называется циклотронным резонансом. Оно позволяет измерить эффективную массу электрона. Такие измерения дали много ценной информации об электронных свойствах полупроводников, металлов и металлоидов. Излучение СВЧ-диапазона играет важную роль также в исследованиях космического пространства. Астрономы многое узнали о нашей Галактике, исследуя излучение с длиной волны 21 см, испускаемое газообразным водородом в межзвездном пространстве.

Теперь можно измерять скорость и определять направление движения рукавов Галактики, а также расположение и плотность областей газообразного водорода в космосе.ИСТОЧНИКИ СВЧ-ИЗЛУЧЕНИЯБыстрый прогресс в области СВЧ-техники в значительной мере связан с изобретением специальных электровакуумных приборов - магнетрона и клистрона, способных генерировать большие количества СВЧ-энергии. Генератор на обычном вакуумном триоде, используемый на низких частотах, в СВЧ-диапазоне оказывается весьма неэффективным. Двумя главными недостатками триода как СВЧ-генератора являются конечное время пролета электрона и межэлектродная емкость. Первый связан с тем, что электрону требуется некоторое (хотя и малое) время, чтобы пролететь между электродами вакуумной лампы.

За это время СВЧ-поле успевает изменить свое направление на обратное, так что и электрон вынужден повернуть обратно, не долетев до другого электрода. В результате электроны без всякой пользы колеблются внутри лампы, не отдавая свою энергию в колебательный контур внешней цепи.Магнетрон. В магнетроне, изобретенном в Великобритании перед Второй мировой войной, эти недостатки отсутствуют, поскольку за основу взят совершенно иной подход к генерации СВЧ-излучения - принцип объемного резонатора. Подобно тому как у органной трубы данного размера имеются собственные акустические резонансные частоты, так и у объемного резонатора имеются собственные электромагнитные резонансы. Стенки резонатора действуют как индуктивность, а пространство между ними - как емкость некой резонансной цепи.

Таким образом, объемный резонатор подобен параллельному резонансному контуру низкочастотного генератора с отдельными конденсатором и катушкой индуктивности. Размеры объемного резонатора выбираются, конечно, так, чтобы данному сочетанию емкости и индуктивности соответствовала нужная резонансная сверхвысокая частота. В магнетроне (рис. 1) предусмотрено несколько объемных резонаторов, симметрично расположенных вокруг катода, находящегося в центре. Прибор помещают между полюсами сильного магнита. При этом электроны, испускаемые катодом, под действием магнитного поля вынуждены двигаться по круговым траекториям. Их скорость такова, что они в строго определенное время пересекают на периферии открытые пазы резонаторов.

При этом они отдают свою кинетическую энергию, возбуждая колебания в резонаторах. Затем электроны возвращаются на катод, и процесс повторяется. Благодаря такому устройству время пролета и межэлектродные емкости не мешают генерации СВЧ-энергии.Рис. 1. МАГНЕТРОН (вид с частичным вырезом, показывающим внутреннее устройство). Представляет собой двухэлектродную электронную лампу, которая генерирует СВЧ-излучение за счет движения электронов под действием взаимно перпендикулярных электрического и магнитного полей. Применяется в качестве генераторной лампы радио- и радиолокационных передатчиков СВЧ-диапазона. 1 - катод. 2 - токоподводы нагревателя. 3 - анодный блок. 4 - объемные резонаторы. 5 - выходная петля связи. 6 - коаксиальный кабель.Магнетроны могут быть сделаны большого размера, и тогда они дают мощные импульсы СВЧ-энергии.

Но у магнетрона имеются свои недостатки. Например, резонаторы для очень высоких частот становятся столь малыми, что их трудно изготавливать, а сам такой магнетрон из-за своих малых размеров не может быть достаточно мощным. Кроме того, для магнетрона нужен тяжелый магнит, причем требуемая масса магнита возрастает с увеличением мощности прибора. Поэтому для самолетных бортовых установок мощные магнетроны не подходят.Клистрон. Для этого электровакуумного прибора, основанного на несколько ином принципе, не требуется внешнее магнитное поле. В клистроне (рис. 2) электроны движутся по прямой от катода к отражательной пластине, а затем обратно. При этом они пересекают открытый зазор объемного резонатора в форме бублика.

Управляющая сетка и сетки резонатора группируют электроны в отдельные "сгустки", так что электроны пересекают зазор резонатора только в определенные моменты времени. Промежутки между сгустками согласованы с резонансной частотой резонатора таким образом, что кинетическая энергия электронов передается резонатору, вследствие чего в нем устанавливаются мощные электромагнитные колебания. Этот процесс можно сравнить с ритмичным раскачиванием первоначально неподвижных качелей.Рис. 2. КЛИСТРОН, электровакуумный прибор отражательного типа. Применяется в СВЧ-технике. Изменяющиеся электрические поля периодически группируют электроны в "сгустки". Электронный пучок, модулированный по скорости, поступает в объемный резонатор, где и вызывает генерацию или усиление.

1 - катод. 2 - резонатор. 3 - отражательная пластина. 4 - резонаторные сетки. 5 - выходная петля связи. 6 - управляющая сетка.Первые клистроны были довольно маломощными приборами, но позднее они побили все рекорды магнетронов как СВЧ-генераторов большой мощности. Были созданы клистроны, выдававшие до 10 млн. Ватт мощности в импульсе и до 100 тыс. Ватт в непрерывном режиме. Система клистронов исследовательского линейного ускорителя частиц выдает 50 млн. Ватт СВЧ-мощности в импульсе. Клистроны могут работать на частотах до 120 млрд. Герц. Однако при этом их выходная мощность, как правило, не превышает одного ватта. Разрабатываются варианты конструкции клистрона, рассчитанного на большие выходные мощности в миллиметровом диапазоне.

Клистроны могут также служить усилителями СВЧ-сигналов. Для этого нужно входной сигнал подавать на сетки объемного резонатора, и тогда плотность электронных сгустков будет изменяться в соответствии с этим сигналом.Лампа бегущей волны (ЛБВ). Еще один электровакуумный прибор для генерации и усиления электромагнитных волн СВЧ-диапазона - лампа бегущей волны. Она представляет собой тонкую откачанную трубку, вставляемую в фокусирующую магнитную катушку. Внутри трубки имеется замедляющая проволочная спираль. Вдоль оси спирали проходит электронный луч, а по самой спирали бежит волна усиливаемого сигнала. Диаметр, длина и шаг спирали, а также скорость электронов подобраны таким образом, что электроны отдают часть своей кинетической энергии бегущей волне.

Радиоволны распространяются со скоростью света, тогда как скорость электронов в луче значительно меньше. Однако, поскольку СВЧ-сигнал вынужден идти по спирали, скорость его продвижения вдоль оси трубки близка к скорости электронного луча. Поэтому бегущая волна достаточно долго взаимодействует с электронами и усиливается, поглощая их энергию. Если на лампу не подается внешний сигнал, то усиливается случайный электрический шум на некоторой резонансной частоте и ЛБВ бегущей волны работает как СВЧ-генератор, а не усилитель. Выходная мощность ЛБВ значительно меньше, чем у магнетронов и клистронов на той же частоте. Однако ЛБВ допускают настройку в необычайно широком частотном диапазоне и могут служить очень чувствительными малошумящими усилителями.

Такое сочетание свойств делает ЛБВ очень ценным прибором СВЧ-техники.Плоские вакуумные триоды. Хотя клистроны и магнетроны более предпочтительны как СВЧ-генераторы, благодаря усовершенствованиям в какой-то мере восстановлена важная роль вакуумных триодов, особенно в качестве усилителей на частотах до 3 млрд. Герц. Трудности, связанные с временем пролета, устранены благодаря очень малым расстояниям между электродами. Нежелательные межэлектродные емкости сведены к минимуму, поскольку электроды сделаны сетчатыми, а все внешние соединения выполняются на больших кольцах, находящихся вне лампы. Как и принято в СВЧ-технике, применен объемный резонатор. Резонатор плотно охватывает лампу, и кольцевые соединители обеспечивают контакт по всей окружности резонатора.Генератор на диоде Ганна.

Такой полупроводниковый СВЧ-генератор был предложен в 1963 Дж.Ганном, сотрудником Уотсоновского научно-исследовательского центра корпорации ИБМ. В настоящее время подобные приборы дают мощности лишь порядка милливатт на частотах не более 24 млрд. Герц. Но в этих пределах он имеет несомненные преимущества перед маломощными клистронами. Поскольку диод Ганна представляет собой монокристалл арсенида галлия, он в принципе более стабилен и долговечен, нежели клистрон, в котором должен быть нагреваемый катод для создания потока электронов и необходим высокий вакуум. Кроме того, диод Ганна работает при сравнительно низком напряжении питания, тогда как для питания клистрона нужны громоздкие и дорогостоящие источники питания с напряжением от 1000 до 5000 В.СХЕМНЫЕ КОМПОНЕНТЫКоаксиальные кабели и волноводы.

Для передачи электромагнитных волн СВЧ-диапазона не через эфир, а по металлическим проводникам нужны специальные методы и проводники особой формы. Обычные провода, по которым передается электричество, пригодные для передачи низкочастотных радиосигналов, неэффективны на сверхвысоких частотах. Любой отрезок провода имеет емкость и индуктивность. Эти т.н. Распределенные параметры приобретают очень важное значение в СВЧ-технике. Сочетание емкости проводника с его собственной индуктивностью на сверхвысоких частотах играет роль резонансного контура, почти полностью блокирующего передачу. Поскольку в проводных линиях передачи невозможно устранить влияние распределенных параметров, приходится обращаться к другим принципам передачи СВЧ-волн.

Эти принципы воплощены в коаксиальных кабелях и волноводах. Коаксиальный кабель состоит из внутреннего провода и охватывающего его цилиндрического наружного проводника. Промежуток между ними заполнен пластиковым диэлектриком, например тефлоном или полиэтиленом. С первого взгляда это может показаться похожим на пару обычных проводов, но на сверхвысоких частотах их функция иная. СВЧ-сигнал, введенный с одного конца кабеля, на самом деле распространяется не по металлу проводников, а по заполненному изолирующим материалом промежутку между ними. Коаксиальные кабели хорошо передают СВЧ-сигналы частотой до нескольких миллиардов герц, но на более высоких частотах их эффективность снижается, и они непригодны для передачи больших мощностей.

Обычные каналы для передачи волн СВЧ-диапазона имеют форму волноводов. Волновод - это тщательно обработанная металлическая труба прямоугольного или кругового поперечного сечения, внутри которой распространяется СВЧ-сигнал. Упрощенно говоря, волновод направляет волну, заставляя ее то и дело отражаться от стенок. Но на самом деле распространение волны по волноводу есть распространение колебаний электрического и магнитного полей волны, как и в свободном пространстве. Такое распространение в волноводе возможно лишь при условии, что его размеры находятся в определенном соотношении с частотой передаваемого сигнала. Поэтому волновод точно рассчитывается, так же точно обрабатывается и предназначается только для узкого интервала частот.

Другие частоты он передает плохо либо вообще не передает. Типичное распределение электрического и магнитного полей внутри волновода показано на рис. 3..

Значения в других словарях
Свелинк Ян Питерсзон

(Sweelinck, Jan Pieterszoon) (1562-1621), нидерландский композитор, последний великий представитель золотого века во фламандской и нидерландской хоровой культуре, а также основоположник клавирного стиля северного барокко. Родился в Девентере в мае 1562. Большую часть жизни он, как и его отец, был органистом Старой церкви (Oude Kerk) в Амстердаме. В течение двух веков нидерландские композиторы занимали ведущее положение в музыкальной культуре Европы. Свелинк положил на музыку 150 псалмов, и этот ..

Свен

(Svend), имя ряда королей средневековой Дании. Существуют различные формы написания имени, в том числе Sveinn на старонорвежском языке, Svend на датском и Sven на шведском.СВЕН ВилобородыйСвен I (прозвище Вилобородый) был поначалу всего лишь наиболее заметным из предводителей викингов. Сын короля Харальда Синезубого, Свен впервые упомянут в 986, когда он поднял мятеж против отца. Раненный Харальд скрылся в области вендов, где вскоре и умер. Войско поддержало Свена, и он сделался единоличным прав..

Сверхновая Звезда

Взрыв, которым ознаменована смерть звезды. Иногда вспышка сверхновой превышает по яркости галактику, в которой она произошла. Сверхновые делят на два основных типа. Тип I отличается дефицитом водорода в оптическом спектре. Поэтому считают, что это взрыв белого карлика - звезды, по массе близкой к Солнцу, но меньшей по размеру и более плотной. В составе белого карлика почти нет водорода, поскольку это конечный продукт эволюции нормальной звезды. В 1930-х годах С.Чандрасекар показал, что масса бел..

Сверхпроводимость

Cостояние, в которое при низкой температуре переходят некоторые твердые электропроводящие вещества. Сверхпроводимость была обнаружена во многих металлах и сплавах и в некоторых полупроводниковых и керамических материалах, число которых все возрастает. Два из наиболее удивительных явлений, которые наблюдаются в сверхпроводящем состоянии вещества, - исчезновение электрического сопротивления в сверхпроводнике и выталкивание магнитного потока (см. Ниже) из его объема. Первый эффект интерпретировался..

Дополнительный поиск Сверхвысоких Частот Диапазон Сверхвысоких Частот Диапазон

Добавить комментарий
Комментарии
Комментариев пока нет

На нашем сайте Вы найдете значение "Сверхвысоких Частот Диапазон" в словаре Энциклопедия Кольера, подробное описание, примеры использования, словосочетания с выражением Сверхвысоких Частот Диапазон, различные варианты толкований, скрытый смысл.

Первая буква "С". Общая длина 28 символа