Ракета авиационная

92

оружие боевой авиации для поражения воздушных и наземных целей, использующее для доставки боеприпаса к цели реактивный двигатель. Существуют неуправляемые и управляемые Р.Неуправляемая авиационные Р. (НАР) состоит из боевого снаряжения (заряд взрывчатого вещества с поражающими элементами различного назначения и взрыватель, обычно ударного действия) и реактивный двигатель твердого топлива с закреплённым на нём стабилизатором, обеспечивающим стабильность траекторий однотипных ракет. Запускаются НАР из блоков направляющих труб или рельсовых пусковых установок. Известны варианты НАР, снабжённых простейшей системой управления, корректирующей полёт Р. К цели.Начиная с 1954 всё более широкое распространение получают управляемые Р.

(УР) двух классов. «воздух — воздух» и «воздух — поверхность». УР — летательный аппарат массой от десятков до тысяч кг с дальностью полёта от нескольких до тысяч км, способный маневрировать за счёт подъёмной силы крыльев и корпуса при управлении аэродинамическими поверхностями (рулями или поворотными крыльями, элеронами или роллеронами — гироуправляемыми элеронами, интерцепторами), а также газовыми рулями, поворотными соплами и т. П. Аэродинамические схемы УР представлены на. На УР используются ракетные двигатели твёрдого топлива (одно- и двухрежимные) или комбинированные ракетно-прямоточные двигатели, а на дальних крылатых ракетах — экономичные ТРД.УР класса «воздух — воздух» , самонаводящиеся по методу пропорциональной навигации (см.

Самонаведение), используют для пеленгации цели радиолокационную, инфракрасную или лазерную головки самонаведения (ГСН). Сигналы управления ракетой формируются в автопилоте соответствующими алгоритмами обработки информации от ГСН (об относительном движении цели. И от бортовых датчиков угловых скоростей, угловых и линейных ускорений ракеты. Для отклонения органов управления применяются рулевые приводы трёх типов. Электрические, гидравлические и газовые. Первичными источниками питания служат электрические аккумуляторы и батареи, газобаллонные и пороховые аккумуляторы давления, гидроаккумуляторы.Современные системы наведения могут представлять собой комбинацию из инерциальных корректируемых систем с цифровыми вычислителями, активных или полуактивно-активных радиолокационных ГСН, чем достигается автономное наведение ракет на большой дальности.

На ракетах малой дальности используются более простые системы с инфракрасными ГСН. Боевое снаряжение ракеты включает боевую часть (заряд взрывчатого вещества, поражающие элементы осколочного, стержневого или комбинированного типа, предохранительно-исполнительный механизм) и неконтактный взрыватель. В зависимости от типа ракеты применяются радиолокационные (активные, полуактивно-пассивные), лазерные (активные) или инфракрасные (пассивные) неконтактные взрыватели.Установился следующий типаж ракет класса «воздух — воздух». Ракеты малой дальности и ближнего воздушного боя (масса до 100 кг, дальность пуска — в пределах радиуса действия инфракрасных ГСН). Ракеты средней дальности (всепогодные, всеракурсные, всевысотные) для поражения воздушных целей всех типов (масса 150—250 кг, дальность до 100 км).

Ракеты большой дальности для перехвата особо важных целей в сложных условиях (масса до 500 кг, дальность до 300 км).Точность самонаведения можно характеризовать вероятностью попадания в круг заданного радиуса. В зависимости от условий применения вероятность попадания в круг радиусом около 10 м для ракет с радиолокационной ГСН (масса боевой части около 30 кг) составляет 0,6—0,9. Более точные ракеты с инфракрасной ГСН с той же вероятностью попадают в круг радиусом 3—5 м (масса боевой части 10—12 кг). Промах обусловлен случайными и динамическими ошибками наведения. Первые связаны с шумами управляющего сигнала (угловые флуктуации прямого или отражённого излучения цели, помехи, внутренние шумы электронной аппаратуры).

Вторые возникают в результате противоракетного манёвра цели и систематических ошибок аппаратуры управления (ложных сигналов).УР класса «воздух — поверхность» в связи с широким диапазоном размеров, уязвимости, информационных и прочих свойств цели отличаются значит, разнообразием по дальности действия, скорости полёта (дозвуковые и сверхзвуковые), принципам пеленгации целей и построения систем управления, типам боевого снаряжения.Ракеты малой дальности применяются для атаки неконтрастных целей после визуального обнаружения и опознавания цели. Прицеливание (целеуказание), а в некоторых системах и наведение осуществляются оператором (на одноместных самолётах — лётчиком). Командное наведение выполняется по методу «трёх точек» (цель, ракета, атакующий самолёт) оператором, который командами, передаваемыми по радиокомандной линии или по проводам на борт ракеты, стремится удерживать её на линии самолёт — цель.В оптико-электронных (лазерных) командных системах датчики, расположенные на борту ракеты, получают ориентацию относительно цели в информационном поле, создаваемом пространственно-временной модуляцией лазерного излучения с борта носителя.

Направление на цель, относительно которого создаётся модуляция, задаётся вручную оператором или определяется автоматически по информационным признакам цели. В поле может быть закоординировано несколько целей и осуществлено наведение нескольких ракет на каждую цель.В системах лазерного полуактивного самонаведения лазерные ГСН ракеты пеленгуют цель, освещённую лучом лазера с самолёта-носителя, специального самолёта (вертолёта)-подсветчика или с земли. Луч лазера удерживается на цели либо оператором вручную, либо автоматизированной следящей системой (например, с телевизионным пеленгатором) по первичному целеуказанию оператора. В системах телевизионного самонаведения отклонение от направления на цель определяется сравнением текущего изображения приёмной электронно-лучевой трубки телевизионной ГСН ракеты с эталонным изображением, зафиксированным в памяти головки оператором при первичном целеуказании.

Эталон по мере сближения с целью автоматически обновляется. По принципам запоминания и сравнения с эталоном информационных признаков цели различают системы контрастные, яркостные и корреляционные. Тепловизорные системы отличаются от телевизионных тем, что чувствительными элементы их приёмных трубок работают не в видимой, а в инфракрасной области спектра, что позволяет применять их как в дневное, так и в ночное время. Ошибка наведения, выявленная координатором цели лазерного, телевизионного или тепловизорного типа, используется для формирования сигнала управления ракетой по методу прямого наведения или пропорциональной навигации. В системах, управляемых вручную или полуавтоматически, ошибки наведения обусловлены главным образом неточностью целеуказания или формирования команд оператором.

Диапазон промахов. От прямых попаданий до кругового вероятного отклонения Eк.в.о. К 10 м.Для атаки цели без входа в зону её ПВО применяются ракеты средней дальности (30—300 км). Пеленгация цели осуществляется по её электро-магнитному излучению (радиолокаторы системы ПВО), по радиоконтрасту (корабль в море) или по телевизионно-радиокомандной линии связи. Для поражения излучающих целей используются самонаводящиеся ракеты с пассивными ГСН, чувствительными в спектральном диапазоне ожидаемого излучения цели. Радиоконтрастные цели поражаются ракетами с комбинированными системами наведения. Инерциальными (по первичному целеуказанию с борта самолёта-носителя) с переходом на самонаведение после захвата цели активной (возможно пассивной или полуактивной) ГСН ракеты.

Телевизионно-командные системы позволяют осуществлять наведение ракет на любые различимые в видимом спектре цели. Оператор на командном пункте управляет полётом ракеты с помощью радиокомандной линии по телевизионному изображению, передаваемому с борта ракеты, ориентируясь сперва по изображению местности. По линиям (дороги, реки) или по ориентирам. Когда в поле зрения телевизионного координатора ракеты появляется цель, оператор производит наведение командами или переключает систему на самонаведение по зафиксированному целеуказанием эталону.Погрешность наведения ракет средней дальности — от прямых попаданий (в крупноразмерную цель типа корабля, моста) до Eк.в.о. К 10 м при наведении на радиолокаторы из-за переотражения их излучения от земли.Стратегические ракеты большой дальности с ядерными боеголовками управляются по программе, контролируемой инерциальной системой наведения.

Современные крылатые ракеты снабжены инерциальной системой, корректируемой в заранее выбранных зонах коррекции системой ориентации по физическим полям земли или по рельефу местности. Разрабатываются более точные системы ориентации управляемых Р. Класса «воздух — поверхность», основанные на корреляционной идентификации информации, получаемой в полёте, с введённой в память ЭВМ ракеты «фотографией» цели или местности, полученной в видимой, инфракрасной, радиочастотной (путём активной радиолокации или радиометрии) областях спектра, а также в магнитное поле.Необходимым условием использования систем коррекции является введение в память ЭВМ ракеты априорной информации с признаками зоны коррекции (или цели) для идентификации.

Боевые части управляемых Р. Класса «воздух — поверхность» специализированы соответственно уязвимости поражаемых целей. Кумулятивные и бронебойные других типов — для поражения бронированной техники прямым попаданием. Фугасные — для поражения наземных сооружений, транспортных средств, радиолокаторов и т. П. Фугасные проникающего действия (бетонобойные) — разновидность фугасных для поражения железобетонных сооружений, взлетно-посадочных полос и т. П. Кассетные, снаряжаемые суббоеприпасами различного назначения, в том числе управляемыми. Ядерные..

Значения в других словарях
Райт

(wright), братья. Уилбер (1867–1912) и Орвилл (1871–1948), американские изобретатели, лётчики, создатели первого в мире самолёта. В 1903 г. Построили планёр-биплан с механизмами управления, установили на нём бензиновый двигатель собственной конструкции мощностью 12 л. С. (9 кВт), два пропеллера и 17 декабря 1903 г. Совершили на нём впервые в мире четыре успешных полёта. В 1904—05 гг. На усовершенствованных самолётах смогли пролетать до 30 км. Показательными полётами в 1908—09 гг. Во Франции и Г..

Ракета

летательный аппарат, движущийся под действием реактивной силы, возникающей при отбросе массы продуктов сгорания ракетного топлива. Появлению ракет предшествовало изобретение пороха (ок. 10 в.). Можно предположить, что первоначально к обычной стреле крепилась трубочка с порохом. Стрела с горящим пороховым зарядом не только летела дальше, но и служила зажигательным снарядом. По разным версиям, на Руси ракетное дело зародилось в 10–11 вв. Достоверно известно, что в 1516 г. Ракеты в ратном деле при..

Ракета-носитель

ракета для выведения в космос космических аппаратов и других полезных грузов.В зависимости от массы полезного груза ракеты-носители подразделяют на лёгкие (полезный груз до 5 т), средние (от 5 до 20 т), тяжёлые (от 20 до 100 т) и сверхтяжёлые (св. 100 т). К лёгким относятся ракеты-носители типа «Космос», «Циклон», «Рокот» и др. Средними ракетами-носителями считаются «Восток», «Союз», «Молния», «Зенит» и т. П. К тяжёлым относятся ракеты-носители «Протон», к сверхтяжёлым – «Н-1» и «Энергия». Раке..

Ракетно-прямоточный двигатель

(РПД) — комбинированный двигатель, сочетающий принципы работы ракетного двигателя (жидкостного ракетного двигателя, ракетного двигателя твердого топлива) и прямоточного воздушно-реактивного двигателя. В ракетном двигателе (газогенераторе) при высоком давлении сжигается топливо с недостатком окислителя, и продукты неполного сгорания подаются через сопла в камеру сгорания прямоточного воздушно-реактивного двигателя, где догорают в потоке воздуха, одновременно производя его эжекционное сжатие. Эф..

Дополнительный поиск Ракета авиационная Ракета авиационная

Добавить комментарий
Комментарии
Комментариев пока нет

На нашем сайте Вы найдете значение "Ракета авиационная" в словаре Энциклопедия техники, подробное описание, примеры использования, словосочетания с выражением Ракета авиационная, различные варианты толкований, скрытый смысл.

Первая буква "Р". Общая длина 18 символа