Прогонки Метод

101

- метод переноса одноточечного граничного условия с помощью дифференциального или разностного уравнения, соответствующего данному уравнению. Применяется для решения граничной задачи в том случае, когда пристрелки метод не эффективен. Пусть на отрезке задано линейное обыкновенное дифференциальное уравнение (1) где квадратная матрица (х).порядка n и вектор f(x) - известные непрерывные функции, дифференцируемая вектор-функция у(х) = подлежит определению. К уравнению (1) присоединены граничные условия в форме (2) где известные матрицы j и y имеют размеры nx kи n x l и ранги k и l соответственно, Используя дифференциальные уравнения с начальными условиями u(а)=j, g(а)=a, где искомая дифференцируемая матрица-функция и(х).имеет размеры , можно определить и(х).и g(х).на всем отрезке (прямой ход прогонки).

С помощью уравнения и второго из граничных условий (2) можно определить значение у(b), если квадратная матрица [и(b),y] имеет ранг п. Искомое решение граничной задачи (1)-(2) вычисляется теперь как решение задачи Коши для уравнения (1) в направлении от точки х=b к точке х=а (обратный ход прогонки). Указанный метод применим и к многоточечной задаче, когда условия вида (2) задаются не только на концах, но и в нескольких внутренних точках отрезка Разработаны варианты метода прогонки для переноса линейных граничных условий, отличных от (2) (см. [1]). Достоинства П. М. Видны на примере следующей граничной задачи. где квадратная матрица Q(x).порядка пи вектор f(х).размера п - известные непрерывные функции, дважды дифференцируемая вектор-функция у(х).подлежит определению, известные квадратные матрицы j и y имеют порядок Используя дифференциальные уравнения с начальными условиями v(а)=j, g(a)=a, где искомая дифференцируемая квадратная матрица-функция v(х).имеет порядок , ищутся v(x).и g(х).на всем отрезке (прямой ход прогонки).

С помощью уравнения и граничного условия (5) можно определить значение (6) если матрица v(b) -y имеет ранг п. Искомое решение граничной задачи (3) - (5) находится как решение задачи Коши для уравнения с начальным условием (6) (обратный ход прогонки). Таким образом, П. М. Для задачи (3) - (5) является методом понижения порядка дифференциального уравнения (3). В случае конечной последовательности линейных алгебраич. Уравнений (7) где коэффициенты а i, с i, bi- - известные квадратные матрицы порядка v, a fi и ji - известный и искомый вектор-столбцы размера v, a1=0, с n=0, алгоритм прогонки определяется следующим образом. при условиях b1=0, z1=0 (прямой ход) и при условии jn+1=0 (обратный ход).

Здесь bi - квадратная матрица порядка v, zi и ji - вектор-столбцы размера v. Изложенный метод наз. Методом правой прогонки. Аналогично формулам (8)- (10) получаются формулы левой прогонки. Комбинируя левую и правую прогонки, получают метод встречных прогонок. При решении уравнений (7) с сильно меняющимися коэффициентами применяется потоковый метод прогонки. Для нахождения периодич. Решения бесконечной последовательности уравнений вида (7) с периодич. Коэффициентами используется циклическая прогонка (см. [4]). См. Также Ортогональной прогонки метод. Лит.:[1] Бахвалов Н. С., Численные Методы, 2изд., М., 1975. [2] Крылов В. И., Бобков В. В., Монастырный П. И., Вычислительные методы, т. 2, М., 1977. [3] Марчук Г. И., Методы вычислительной математики, 2 изд., М., 1980.

[4] Самарский А. А., Николаев Е. С., Методы решения сеточных уравнений, М., 1978. А. Ф. Шапкин.

Значения в других словарях
Про-p-группа

- проконечная группа, являющаяся проективным пределом конечных р-групп. Напр., аддитивная группа кольца целых р-адичсских чисел является П.-р-г. В теории Галуа П.-р-г. Появляются как группы Галуа р-расширений полей. Пусть Gесть П.-p-г. Ее системой образующих наз. Подмножество , обладающее свойствами. 1) Gсовпадает с минимальной замкнутой подгруппой группы G, содержащей Е,2) в любой окрестности единицы группы Gсодержатся почти все (т. Е. Все, кроме конечного числа) элементы из Е. Пусть I -..

Проблемно-ориентированный Язык

специализированный язык программирования задач, принадлежащих нек-рому четко выделяемому классу. Выделение класса производится либо фиксацией математич. Объектов, лежащих в основе решаемых задач (напр., класс задач линейной алгебры), либо фиксацией области применения ЭВМ (напр., класс задач оперативного планирования и учета на предприятии). Проблемная ориентация обычно производится в контексте нек-рого универсального языка программирования, по отношению к к-рому П.-о. Я. Является либо над-, либ..

Программ Оптимизирующие Преобразования

- применяемые при трансляции направленные преобразования программы, представленной в иек-рой ее промежуточной форме, с целью улучшения рабочих характеристик программы, связанных с использованием ею ресурсов ЭВМ, главными из к-рых являются время выполнения и объем занимаемой памяти. Обычно каждое применение П. О. П. Изменяет локальную семантику фрагментов программы, но сохраняет семантику программы в целом - результирующая программа либо эквивалентна исходной, либо является ее доопределением на..

Программа

- план действий, подлежащих выполнению нек-рым исполнителем, обычно автоматическим устройством, чаще всего ЭВМ. Предписание, алгоритм. П. Представляется в виде конечной совокупности команд (инструкций), каждая из к-рых побуждает исполнителя выполнить нек-рую элементарную операцию над данными, хранящимися в памяти исполнителя и имена к-рых являются параметрами команды. Автоматизм исполнения достигается тем, что любая текущая команда, кроме завершающей, указывает однозначно на команду П., к-рая д..

Дополнительный поиск Прогонки Метод Прогонки Метод

Добавить комментарий
Комментарии
Комментариев пока нет

На нашем сайте Вы найдете значение "Прогонки Метод" в словаре Математическая энциклопедия, подробное описание, примеры использования, словосочетания с выражением Прогонки Метод, различные варианты толкований, скрытый смысл.

Первая буква "П". Общая длина 14 символа