Турбулентное трение

70

возникновение в турбулентном течении жидкости или газа дополнительных касательных и нормальных напряжений из-за переноса импульса вследствие наложения пульсаций (пульсационного движения) на осреднённое движение. Эти дополнительные напряжения (τ′α β) ((α, β) = х, у, z. Х, у, z — декартовы координаты, первый индекс означает направление нормали к рассматриваемой элементарной площадке, второй — направление компонента соответствующего вектора) образуют тензор напряжений турбулентного трения ||T(′)|| и характеризуют напряжённое состояние в точке потока, обусловленное пульсационным движением среды. Т. О., воздействие пульсационного движения на осреднённое как бы увеличивает сопротивление возникновению деформаций, что качественно равносильно увеличению вязкости осреднённого движения.

В отличие от обычной вязкости, которая возникает из-за переноса импульса на молекулярном уровне и является физической характеристикой среды, Т. Т. Связано с переносом импульса на макроскопическом уровне, определяется в основном кинематикой течения. Связь между ||T(′)|| и характеристиками пульсационного движения устанавливается на основе Навье — Стокса уравнений путём усреднения их по времени (см. Турбулентность). В частности, для несжимаемой жидкости||T(′)|| = ||(ρ)||,где u(′α), u(′β) — пульсации соответствующих компонентов вектора скорости, (ρ) — плотность, знак означает усреднение по времени. Поскольку характеристики пульсационного движения обычно неизвестны, то установление связи между ||T(′)|| и тензором скоростей деформаций осреднённого движения является одной из основных задач при теоретическом анализе турбулентных течений.

Например, французский учёный Ж. Буссинеск по аналогии с законом Ньютона предложил линейную связь между этими тензорами, которая в частном случае движения жидкости в пограничном слое принимает вид:(τ)х у = (μ)т(∂)u/(∂)y = (ρν)т(∂)u/(∂)y,где (μ)т, (ν)т — динамическая и кинематическая турбулентные вязкости соответственно. При этом значения (μ)т и(ν)т и зависимость их от характеристик поля осреднённого течения неизвестны и должны устанавливаться на основе результатов теоретикоэкспериментальных исследований. В общем случае введённая таким образом турбулентная вязкость является тензорной величиной..

Значения в других словарях
Турбореактивный двухконтурный двигатель

(ТРДД), турбовентиляторный двигатель, — турбореактивный двигатель с внутренним и наружным контурами, в котором часть энергии сгорания топлива, подводимого во внутренний контур, преобразуется в механическую работу для привода вентилятора наружного контура. Внутренний контур содержит компрессор, турбины компрессора и вентилятора и камеру сгорания. Поток сжатого воздуха наружного контура и поток газа внутреннего контура, вытекающего из турбины вентилятора, используются для получения реактивной тя..

Турбулентное течение

течение жидкости или газа, характеризующееся беспорядочным, нерегулярным перемещением его объёмов и их интенсивным перемешиванием (см. Турбулентность), но в целом имеющее плавный, регулярный характер. Образование Т. Т. Связано с неустойчивостью ламинарного течения при больших Рейнольдса числах (см. Переход ламинарного течения в турбулентное). При исследовании Т. Т. Различают пристенные течения (турбулентный пограничный слой, течения в трубах и каналах) и свободные течения (турбулентные струи, с..

Турбулентность

(от лат. Turbulentus — бурный, беспорядочный) — физическое явление, характеризующееся нерегулярными взаимными перемещениями объёмов среды (жидкости или газа) и их перемешиванием и сопровождающееся хаотическими изменениями газодинамических переменных в пространстве и времени. Термин предложен английским физиком У. Томсоном. Важной чертой Т. Является сложная вихревая структура течения с широким спектром масштабов движений (размеров вихрей). Исследование Т. — одна из наиболее сложных и важных про..

Турбулентные струи

течение жидкости или газа, возникающее при истечении их из отверстия, сопла или насадка в неподвижную или движущуюся с иной скоростью среду с одинаковыми или отличающимися теплофизическими свойствами при больших Рейнольдса числах. В невязкой жидкости граница струи представляет собой тангенциальный разрыв (см. Струйных течений теория). Из-за неустойчивости и влияния вязкости она разрушается, что приводит к появлению вихрей разного размера и перемешиванию частиц струи и окружающей среды. При этом..

Дополнительный поиск Турбулентное трение Турбулентное трение

Добавить комментарий
Комментарии
Комментариев пока нет

На нашем сайте Вы найдете значение "Турбулентное трение" в словаре Энциклопедия техники, подробное описание, примеры использования, словосочетания с выражением Турбулентное трение, различные варианты толкований, скрытый смысл.

Первая буква "Т". Общая длина 19 символа