Однолистная Функция

95

- функция f, регулярная или мероморфная в области Врасширенной комплексной плоскости п такая, что для всяких zl , выполняется соотношение то есть f отображает В в взаимно однозначно. При этом обратная функция также однолистна. Обобщением О. Ф. Являются многолистные функции, в частности р-листные функции. При изучении О. Ф. Одним из основных является вопрос о возможности однолистного отображения заданной области В на заданную область В' (т. Е. Отображения с помощью О. Ф.). Необходимым условием существования такого отображения является равенство порядков связности областей Ви В' (см., напр., [1] с. 28). Если Ви В' - односвязные области, границы к-рых содержат более одной точки, то это условие является и достаточным (см.

Римана теорема )и задача сводится к отображению заданной области на круг. В связи с этим особую роль в теории О. Ф. В односвязных областях играет класс S функций f, регулярных и однолистных в круге , нормированных условиями f(0) = 0, f' (0)=1 и имеющих разложение В случае многосвязных областей изучают отображение заданной многосвязной области на т. Н. Канонич. Области (см. Конформное отображение). Пусть - класс функций F, мероморфных и однолистных в области В, содержащей точку , и имеющих в окрестности точки разложение Если то этот класс обозначают . Основные задачи теории О. Ф. Следующие. 1) изучение соответствия границ при конформном отображении (см. Соответствия границ принцип, Граничные элементы. Достижимая граничная точка);2) получение однолистности условий;3) решение различных экстремальных задач теории функций, в частности получение оценок различных функционалов и областей значений функционалов (см.

Ниже) и их систем в том или другом классе. Пусть имеется нек-рый класс (множество) Крегулярных или мероморфных функций и пусть на Кзадан комплексный функционал (или система функционалов . Областью значений функционала (или системы функционалов на классе Кназ. Множество Dточек комплексного пространства (соответственно множество точек n-мерного комплексного пространства ) таких, что . Рассматриваются также действительные функционалы. Всякое множество , содержащее D, наз. Мажорантной областью функционала (или системы функционалов). Знание области значений функционала позволяет свести решение ряда экстремальных задач к более простым задачам анализа. Напр., если известна область Dзначений функционала (z0 фиксировано), то задача оценки сверху и снизу сводится к нахождению самой далекой и самой близкой точек из Dпо отношению к точке w=0.

Первые существенные результаты в теории О. Ф. Получены использованием площадей принципа. С помощью внешней теоремы площадей Л. Бибербах (L. Bieberbach, 1916) получил точные оценки и сверху и снизу для (см. Искажения теоремы), дал оценку для и высказал гипотезу, что для (см. Бибербаха гипотеза, Коэффици ентов проблема). Им же было найдено точное значение постоянной Кёбе. Были также получены оценки модуля функции, модуля ее производной и другие оценки в классах выпуклых функций, звездообразных функций, типично вещественных функций и др. В ряде классов были найдены выпуклости радиус и радиус звездообразности (см. Звездообразности граница). Ниже приведены основные методы теории О. Ф. И нек-рые результаты, полученные с их помощью.

1. Метод интегральных представлений дает возможность достаточно просто решать многие задачи теории функций, в частности экстремальные задачи в классах функций, имеющих представление с помощью интегралов Стилтьеса. Выпуклых функций, почти выпуклых функций, звездообразных функций, типично вещественных функций, функций с положительной действительной частью (см. Каратеодори класс). Для классов функций, представимых посредством интеграла Стилтьеса, был разработан нек-рый вариационный метод (см. [1] с. 504-19), с помощью к-рого решен ряд экстремальных задач. Для таких классов разработан внутренних вариаций метод. Найдены выпуклые оболочки нек-рых подклассов класса S(см. [3]). Здесь, в частности, доказано, что для всякой звездообразной функции f существует неубывающая на [0,2p] функция m такая, что и См.

Также Интегральное представление аналитической функции, Параметрическое представление, Параметрических представлений метод. 2. Метод контурного интегрирования. С помощью этого метода было, в частности, доказано, что для справедливо неравенство (см. [1]. С. 135-39) где и - полные эллиптические интегралы. Если zфиксировано , то это неравенство определяет область значений функционала в классе S. Получены усиления теорем искажения и доказаны теоремы об искажении хорд в классах и (см. Искажения теоремы и [1] с. 118-35). См. Также Контурного интегрирования метод, Площадей принцип. 3. Метод площадей. Пусть - класс систем функций конформно и однолистно отображающих круг на области попарно не имеющие общих точек (неналегающие области), и нормированных условиями .

С помощью теоремы площадей в классе в частности, получены следующие результаты. 1) если то это неравенство обобщает на случай комплексных известное ранее неравенство для действительных . 2) если то Для Бибербаха- Эйленберга функций отсюда следует неравенство выяснены условия, при выполнении к-рых в (4) и (4') имеет место знак равенства. С помощью теоремы площадей для неналегающих областей получена оценка приближения функции, регулярной на замкнутой многосвязной области, рациональной функцией, интерполирующей заданную функцию в узлах, равнорасположенных на границе области (см. [4] с. 143-54). Получена область значений шварциана для и ряд других областей значений в классах функций, заданных в многосвязных областях (см.

[4], [5]). 4. Метод Лёвнера. Сам К. Лёвнер (К. Lowner, 1923) получил точную оценку для функций и точные оценки коэффициентов разложения функции, обратной к f , в окрестности точки . В частности, этим методом получена точная форма теоремы вращения в классе S(см. Вращения теоремы). Доказана теорема. Для при заданных и справедливо неравенство где определяется условием Неравенство (5) точное. Из (5) следуют точные неравенства в классе Был введен весьма широкий подкласс функций , представимых в виде где g- звездообразная функция, р- регулярная в функция и такая, что для нек-рого (см.[6] с. 47). С помощью теорем искажения было установлено, что функция Кёбе (- действительное) реализует максимум линейной меры покрытия окружности образом круга при отображении функциями класса S, когда .

Из этого свойства функций класса S следуют оценки площади области , оценки среднего модуля функции и другие оценки в классе S, асимптотически точные при (см. [1] с. 561). Была предложена нек-рая удобная редукция экстремальных задач на классе Sи нек-рых его подклассах к определенным экстремальным задачам на более простом классе (см. Каратеодори класс), оказавшаяся применимой к решению ряда экстремальных задач, в частности к нахождению области значений системы функционалов (здесь фиксировано) для (см. [6] с. 115-58). Метод Лёвнера успешно применялся к исследованию свойств линий уровня и к решению экстремальных задач на подклассе ограниченных функций (см. [6] с. 150-77). См. Также Лёвнера уравнение, Лёвнера метод, Параметрических представлений метод.

5. Вариационные методы. Граничные и внутренние вариации при решении экстремальных задач приводят к дифференциальным уравнениям для границ экстремальных областей и, соответственно, для экстремальных функций. Левая часть этих уравнений, как правило, есть нек-рый квадратичный дифференциал. Различные качественные характеристики функций, реализующих экстремум, получаются при исследовании свойств соответствующих квадратичных дифференциалов. В частности, для большого числа экстремальных задач в классе S(и в других классах) оказывается, что экстремальная функция отображает круг D на всю плоскость с конечным числом аналитич. Разрезов. Иногда дифференциальное уравнение для экстремальной функции удается проинтегрировать и тем самым получить величину экстремума в исследуемой задаче и все экстремальные функции.

Чаще удается лишь получить одно или несколько конечных уравнений для величины экстремума. Нек-рые результаты, полученные вариационным методом, перечислены ниже. // .

Значения в других словарях
Ограниченный Квантор

- квантор, используемый для характеризации предикатов не на всей области изменения данной предметной переменной, а на ее части, выделяемой нек-рым предикатом R(х). При использовании в качестве О. К. всеобщности квантор и существования квантор обычно обозначаются и . Если - нек-рый предикат, то означает т. Е. Что предикат Р(х)истинен при всех значениях переменной х, удовлетворяющих предикату R(х). Высказывание означает т. Е. Что пересечение областей истинности предикатов R(х)и Р(х..

Ограниченный Оператор

- отображение А топологического векторного пространства Xв топологическое векторное пространство Y такое, что (М)- ограниченное подмножество в Yдля любого ограниченного подмножества Мпространства X. Всякий оператор непрерывный на X, является О. О. Если - линейный оператор, то для ограниченности Адостаточно, чтобы существовала окрестность нуля такая, что A(U)ограничено в Y. Пусть X,Y - векторные нормированные пространства и линейный оператор ограничен. Тогда Это число наз. Нормой оператора ..

Однолистности Радиус

- радиус наибольшего круга в к-ром однолистны все функции семейства регулярных в круге функций таких, что при . Оказывается, что причем функция однолистна в круге но не в большем круге (имеющем центр в начале). Для функций, регулярных в круге и таких, что и , О. Р. определяется аналогично, и его значение легко получается из Г. К. Антонюк.. ..

Однолистности Условия

- необходимые и достаточные условия, при к-рых регулярная (или мероморфная) функция однолистна в нек-рой области комплексной плоскости . Необходимым и достаточным условием однолистности в достаточно малой окрестности точки аявляется . Такая (локальная) однолистность во всех точках области еще не гарантирует однолистности в области. Напр., функция неоднолистна в круге , где , хотя для нее выполняется условие локальной однолистности в каждой точке плоскости. Необходимым условием однолистности яв..

Дополнительный поиск Однолистная Функция Однолистная Функция

Добавить комментарий
Комментарии
Комментариев пока нет

На нашем сайте Вы найдете значение "Однолистная Функция" в словаре Математическая энциклопедия, подробное описание, примеры использования, словосочетания с выражением Однолистная Функция, различные варианты толкований, скрытый смысл.

Первая буква "О". Общая длина 19 символа