Калориметрия

81

(физ. И хим.). — К. Назыв. Собрание способов количественного определения тепла, выделившегося или поглощенного при разного рода физических или химических явлениях. В начале калориметрические исследования почти исключительно относились к определению таких физических свойств тела, как теплоемкость, теплота испарения, плавления и пр. С тех же пор, когда явилась попытка измерять химическое сродство тел количеством тепла, выделяющегося или поглощаемого при их взаимодействии, и на основании этого объяснять ход и направление различных химических реакций, когда появилась, одним словом, термохимия (см.), калориметрические определения начинают играть важную роль в решении многих теоретических вопросов химии и входят во всеобщее распространение.

Заводская техника также мало-помалу начинает прибегать к подобного рода определениям, напр. При суждении о теплопроизводительной способности разного рода горючих материалов и пр. В большинстве случаев калориметрич. Определения в последнее время ведутся по способу смешения, разработанному, главным образом, Реньо, и с теми изменениями, которые ему даны Бертело и другими. Сущность этого способа состоит в следующем. Выделившееся [Для простоты и для избежания повторений будем во всей статье говорить только о тех случаях, когда тепло выделяется.] при изучении известного явления тепло употребляют на нагревание взятой в известном количестве воды или другой какой-либо жидкости и с возможной точностью определяют изменения ее на темп.

Зная при этом. 1) теплоемкость взятой жидкости, 2) количество тепла, израсходованного прямой передачей на нагревание различных частей прибора, в котором ведется опыт (сосуда, в котором находится рассматриваемая жидкость, мешалки, термометра, в нее погруженных, и пр.), и, наконец, 3) сколько потеряно или приобретено тепла в течение опыта путем лучеиспускания, зная все это, мы получаем все данные для вычисления искомого количества тепла. Прибор, употребляемый для этой цели, состоит из следующих главных частей. 1) калориметр в собственном смысле, 2) ванны, 3) мешалка и 4) термометр.Калориметром вообще называется сосуд, в котором ведется вся операция измерения выделившегося в известных условиях тепла. В рассматриваемом способе смешения им может быть всякого рода сосуд, в который можно поместить назначенную для опыта жидкость.

К. Бывают платиновые, латунные и стеклянные. Удобнее всего платиновые к-ры — как потому, что платина отличается своей неизменяемостью и громадное большинство химических соединений на нее не действует. Так потому, что она имеет малую теплоемкость (0,0324). Кроме того, большая теплопроводность платины, благодаря которой калориметр быстро приобретает темп. Находящейся в нем жидкости, и белый цвет платины, благоприятный для защиты калориметра от действия лучистой теплоты, все это вместе делает платину незаменимой при калориметрических определениях. Платиновые калорим. Имеют обыкновенно форму цилиндра с тонкими полированными стенками, вместимостью от 2 и более л. До 50 куб. См. Чем объемистее к-р, чем больше он вмещает взятой для опыта жидкости, тем меньше могут быть сделаны различного рода поправки полученных результатов (напр.

Поправки на охлаждение или нагревание и пр.) и тем точнее могут быть поставлены опыты. В большинстве случаев употребляются калориметры, способные вместить от 600-650 куб. См жидкости. Высота калориметров бывает больше их диаметра. Это делается с целью уменьшить испарение находящейся в них жидкости. Иногда они снабжены крышками, в которых сделаны отверстия для термометра, мешалки и пр. (фиг. 1).Фиг 1. Прибор для калориметрических определений по БертелоВо многих случаях платиновые К. — довольно дорогие — могут быть заменены латунными, когда жидкость, помещенная в них, на латунь не действует, напр. При определении теплот горения и при других подобных операциях, когда изучаемая химическая реакция производится в другом сосуде, находящемся в к-ре, и выделившееся тепло идет на нагревание налитой в к-р воды, или, напр., при определении теплоемкостей и пр.

С виду они делаются такие же, как и платиновые, и обыкновенно бывают вызолочены. Теплоемкость латуни принимается 0,095. В некоторых случаях прибегают к стеклянным калориметрам, когда приходится оперировать с веществами, действующими даже на платину, напр. Царская водка, бром и пр., или же когда требуется полная герметичность при опыте, напр. При работах с газами, летучими жидкостями, веществами, изменяющимися на воздухе, и пр. Делаются они по возможности из тонкого стекла, и им придают самую разнообразную форму, смотря по удобству. Часто, напр., употребляют для этой цели склянки с притертыми пробками или же обыкновенные колбы. Когда приходится их взбалтывать, то это делают или при помощи деревянных пинцетов, или же просто руками, обернув горло склянки пробкой.

Неудобство стеклянных калориметров заключается в том, что стекло очень медленно принимает окружающую температуру, обладает большой теплоемкостью, которая почти в 6 раз больше, чем для платины — около 0,195.Ванны. Чтобы защитить К. От внешних влияний — охлаждения или нагревания — употребляют так называемые ванны. У Бертело их берется две (фиг. 1). Одна внутренняя, Е представляет тонкий медный цилиндр, посеребренный внутри и полированный. Другая, наружная Н — водяная ванна — состоит из медного или жестяного сосуда с двойным дном и двойными стенками, между которыми находится вода, перемешиваемая при помощи особой мешалки A. Температура воды определяется термометром t, проходящим в одно из отверстий в ванне φ. Ванна вмещает от 10 до 40 литров воды.

Внутри она бывает эмалирована, а снаружи покрыта толстым слоем войлока. Калориметр и ванны расположены следующим образом (фиг. 1). В медный сосуд E кладется деревянный треугольник, по углам которого укреплены остроконечные пробки. На них помещается калориметр G. Сосуд E вместе с калориметром ставится в водяную ванну на соломенный кружок или же на деревянный треугольник с пробками. Между калориметром и ванной E, с одной стороны, и между обеими ваннами, с другой, находится, таким образом, слой воздуха, который считается наиболее плохим проводником тепла. Кроме того, самый ход охлаждения или нагревания калориметра в зависимости от окружающей среды в этих условиях идет более правильно, чем, напр., если бы между ваннами находился слой какого-нибудь непроводника вроде ваты, пуха и пр.

Защите К. От внешних влияний (от близости экспериментатора и пр.) много способствует также масса воды, находящейся в наружной ванне, а полированная серебряная поверхность внутренней ванны ослабляет потерю тепла лучеиспусканием.Мешалка. Во время опыта жидкость в калориметре должна постоянно перемешиваться, чтобы она везде имела одну и ту же температуру и указание термометра не было бы, таким образом, местного характера. Перемешивание ведется или самим же термометром, или же при помощи особых мешалок. Очень удобна винтообразная мешалка, предложенная Бертело (фиг. 2). Она состоит из 4 тонких полосок А А' А"А "', прикрепленных к кольцам В В', связанным четырьмя стержнями.Фиг 2. Винтообразная мешалка БертелоПолоски около 1 см шириной идут спирально, приблизительно под углом в 45° к оси, и притом расположены так, что если мешалку ввести в калориметр, как на прилагаемом рисунке, то они будут перпендикулярны к поверхности калориметра.

Диаметр колец В В' немногим меньше диаметра калориметра. Все это делается из платины или золоченой латуни. Верхняя часть мешалки С эбонитовая. В некоторых случаях, напр. При определении теплоты горения в калориметрической бомбе Бертело (см. Ниже), для удобства ее делают наполовину меньше, как бы разрезают по оси (фиг. 3).Фиг. 3 Мешалка с ее двигателемМешалка прикрепляется к особому механизму (фиг. 3), который приводится в движение водяным, лучше электрическим двигателем, например Марселя Депрэ. Она описывает дугу в 30° — 40° попеременно то в одну, то в другую сторону. Перемешивание здесь происходит быстрое и полное. Другие мешалки, напр. Движущиеся вверх и вниз, бывшие раньше в большом употреблении, кроме неполноты перемешивания могут иметь еще и то неудобство, что, высовываясь по временам из жидкости, смоченные ею, они способствуют более быстрому испарению ее.Термометры, назначенные для калориметрических определений, должны обладать большой чувствительностью и точностью.

Они бывают обыкновенно разделены на 1/10°;но деления бывают настолько значительны, что глазом или лупой с полной уверенностью можно отсчитывать 0,005°. Каждый термометр дает указание не более как в пределе 10° — 13°, напр. От -1° до 12°, от 12° до 23°, причем их имеется всегда целая серия. Относительно требований, которые должны быть предъявлены к точным термометрам, проверка термометров, определение 0° и 100° см. Термометрия. Для каждого калориметрического термометра дается всегда вес находящейся в нем ртути, вес стекла в шарике термометра и вес шкалы. Это необходимо знать для расчета полученных при калорим. Определениях данных, когда требуется большая точность. При вычислении тепла, израсходованного на нагревание термометра, принимается во внимание только та часть его, которая погружена в жидкость.

Отсчитывание термометра удобнее всего вести при помощи горизонтально установленной зрительной трубы. При этом необходимо заметить, что при изменении температуры столбик ртути в очень тонких капиллярах движется скачками. Поэтому полезно делать время от времени по термометру постукивания. При очень точных опытах показание термометра исправляется на температуру столбика ртути, поднявшейся над поверхностью измеряемой жидкости, по формуле dT = [n(T — t)]/65000, где Т наблюдаемая температура жидкости, t -температура окружающей среды и n длина в градусах столба ртути над жидкостью. Для обыкновенных опытов, когда Т — t не превышает 4°, эта поправка не более 0,005°. Такого же сорта поправка на изменение объема шарика термометра от большей или меньшей высоты столба ртути, давящей на его стенки, принимая, что наружное давление на резервуар в течение опыта не изменилось.

Что касается положения 0° у калорим. Термометров, то его полезно определять время от времени. Хотя, впрочем, для калориметрических определений важно знать с точностью не столько данную темп., сколько разницу между двумя близко лежащими температурами.Помещение, назначенное для калориметрических определений, должно удовлетворять известным условиям. Главнейшим требованием является постоянство температуры в нем. Оно должно быть просторно, не должно выходить на солнечную сторону. Отопление его должно производиться так, чтобы в нем по возможности были устранены холодные и теплые течения во время опытов, и пр. Как производятся самые наблюдения, будет указано ниже, на частных примерах. Прямой расчет полученных при опыте данных не представляет ничего особенного.

Главнейшим затруднением является вычисление разного рода поправок. В особенности весьма важна поправка на охлаждение или нагревание калориметра в зависимости от внешних условий. Несмотря на все предосторожности, внешняя среда не остается без влияния на калориметр во время опыта, в особенности, если последний тянется продолжительное время и если температура к-ра значительно разнится от темп-ры окружающего воздуха. Если для к-ра она выше, происходит потеря тепла, частью при помощи лучеиспускания, частью вследствие прямой передачи окружающему воздуху, подставкам и пр. Наконец, оно расходуется на испарение жидкости в к-ре, если последний не закрыт герметически, причем величина этой затраты зависит от множества причин (поверхности К., степени влажности воздуха и пр.).

Если температура к-ра становится ниже, точно таким же образом происходит нагревание его. В прежнее время для устранения такого рода погрешностей старались ввести компенсацию. Именно. Опыт ставился таким образом, чтобы температура жидкости в калориметре перед началом опыта была несколько ниже, чем в окружающей среде, и при том настолько ниже, насколько она потом в конце опыта поднимется выше над ней. При этом предполагалось, что количество тепла α, приобретенное калориметром в первую половину опыта, будет равно его потере β во вторую половину. Не говоря уже о том, что при этом делалось допущение, что ход температуры калориметра в зависимости от времени в первую и вторую половины опыта идентичен (чего на практике обыкновенно не бывает), при этом упускалось из виду, что расходование тепла на испарение жидкости в калориметре, который обыкновенно бывает открыт, происходит во все время опыта и ничем не компенсируется.

Поправки на охлаждение или нагревание калориметра делаются обыкновенно по способу Реньо-Пфаундлера. В основе этого способа лежит допущение, что охлаждение калориметра в каждый момент идет прямо пропорционально разности его температуры t и температуры окружающей среды Т, которая считается постоянной в течение всего опыта (вообще, внешние условия во все время опыта принимаются не изменяющимися). Положим, что явление передачи тепла калориметру от исследуемого термического процесса совершается в течение n минут. Пусть to начальная температура к-ра, t1, t2,. Tn — температуры его в конце 1-й, 2-й, n-й минут и Т ' температура окружающей среды. Рассмотрим охлаждение к-ра ΔTs (уменьшение его температуры) в течение одной какой-нибудь минуты, напр.

S-той минуты от начала. Назовем среднюю темпер. К-ра в течение рассматриваемого промежутка времени через Тs. Можно приблизительно принять, что Тs равно (ts-1 + ts)/2. В силу вышеуказанного положения ΔTs = А(Тs — Т'), где А постоянная для данного опыта величина. Если через ΔT0 назовем охлаждение к-ра в течение одной минуты при средней темпер. К-ра T0 перед опытом и через ΔTn+1, Tn+i соответственные величины непосредственно после опыта, получим ΔT0 =A(T0 −T '). =A(Tn+i − T') отсюда ΔTn+i = ΔT0 + A(Ti − T0)(1), где A = (Tn+i − ΔT0)/(Tn+i − T0). В уравнение (1) не входит темп. Окружающей среды, которая вообще несколько неопределенного характера. Очевидно, охлаждение калориметра X в течение всего опыта будет равноТаким образом, если бы не было охлаждения, темпер.

К-ра изменилась бы от t0 не до tn, а до . Для определения ΔT0 наблюдают изменение темп. К-ра в течение 5 или 10 минут до опыта и берут среднюю величину, отвечающую одной минуте. Т0 будет средняя темпер. К-ра за этот период времени. Точно так же находят ΔTn+1 и Tn+1. Таким образом, для вычисления поправок на охлаждение по Реньо-Пфаундлеру каждый опыт должен обнимать 3 периода. 1-й предварительный период для определения ΔТ0 и Т0 . 2-й период, когда происходит самый термический процесс, и 3-й, заключительный период — для определения ΔTn+1 и Tn+1. Во время опыта температура к-ра записывается обыкновенно через минуту, иногда через 1/3 м и даже более короткие промежутки времени. Ход рассуждений этим, очевидно, не изменяется.

N будет указывать число равных промежутков времени, на которые разбит опыт. При надлежащей постановке калориметрических определений ход температуры в 1-й период бывает очень правильный, без скачков, и часто она является постоянной, так что ΔT0 = 0. Во 2-й период вначале часто она изменяется очень быстро, и можно записывать только десятые доли градуса. Конец 2-го периода очень часто не совпадает с maximum показания термометра (или minimum, если происходит поглощение тепла). Дело в том, что хотя отделение тепла и происходит, но оно может оказаться меньше того, что калориметр теряет, и потому происходит падение термометра, крайне неправильное. С того момента, когда прекращается отделение тепла, ход термометра снова становится правильным, и этим начинается 3-й период.

Способ вычисления поправок Реньо-Пфаундлера дает прекрасные результаты, если самый процесс отделения тепла продолжается недолго, напр. Несколько минут. Но если он тянется долгое время, то Бертело советует определять их более строгим образом. Дело в том, что положение, лежащее в основе вышеприведенных расчетов о зависимости охлаждения только от разности температуры к-ра и окружающей среды, не выражает всей совокупности явления. Потеря тепла на испарение, напр., воды в к-ре зависит от гигрометрического состояния среды и не идет пропорционально разности температур и проч. Постоянство внешних условий опыта тоже является сомнительным, так как, напр., хотя температура комнаты может оставаться постоянной, но нельзя допустить, чтобы она не менялась для слоев воздуха между калориметром, ваннами и пр.

Для небольших промежутков времени этим можно пренебречь. Но для продолжительных опытов с этим приходится считаться. Сущность способа вычисления поправок по Бертело состоит в том, что находят экспериментальным путем их не только для двух температур T0 и Tт+1, начальной и конечной, но и для других промежуточных температур, придавая к-ру эти температуры и изучая его охлаждение. Получив таким образом опытным путем для разных температур T1, Tq и проч. Значение ΔTq, Ts, строят по этим данным кривую, которая и дает возможность вычислить охлаждение к-ра для всех температур, которые принимались калориметром во время опыта. При этом все-таки заботятся о постоянстве внешних условий опыта. На практике это делается следующим образом.

В начале наблюдение ведется обычным порядком, как и для расчетов по Реньо-Пфаундлеру. Когда опыт кончен, берут часть жидкости из к-ра заменяют ее более холодной и наблюдают охлаждение к-ра в этих условиях. Повторяют эту операцию во 2-й, 3-й раз и т. Д. И получают таким образом необходимые данные. Необходимо заметить в заключение, что та и другая система поправок только тогда дают хорошие результаты, когда температура к-ра разнится от окружающей не более как на 4°, и вообще изменение температуры к-ра обыкновенно бывает не более этого. Поэтому, чтобы не было большой разницы в температуре, все необходимые жидкости приносятся в калориметрическую комнату заранее и проч. Что же касается самого расчета полученных при опыте данных, то здесь очень полезно знать так наз.

Водяной эквивалент прибора (Wasserverth, valeur en eau), т. Е. Количество воды, которое являлось бы равнозначащим данному прибору (к-ру, мешалке, термометру и пр. Вместе) в термическом отношении, именно требовало бы одинаковое с ним количество тепла при нагревании на одно и то же число градусов. Введение водяного эквивалента сильно упрощает все вычисления. Его определяют, зная теплоемкости и веса различных частей прибора или прямо экспериментальным путем, наблюдая какой-нибудь известный термический процесс. Напр. В к-р., в котором находится вода при обыкновенной температуре, приливают известное количество нагретой воды определенной температуры и делают наблюдение. Зная, сколько должно выделиться тепла в этих условиях, находят, сколько его пошло на нагревание прибора, а затем и водяной эквивалент прибора.

Рассмотрим теперь главнейшие случаи обычных калориметрических определений.Определение теплоемкостей. Твердые тела. Главнейшее затруднение при подобного рода опытах представляет точное определение темп. Данного тела в момент погружения его в кал-метр. Для веществ, не растворимых в воде, не изменяющихся на воздухе, напр. Многих металлов и проч., поступают следующим образом (фиг. 4).Фиг. 4. Прибор для нагревания твердых тел при опрелении теплоемкостиИсследуемое тело берется в зернах или стружках, и известное количество его помещается в легкую медную проволочную корзиночку Р, внутри которой находится шарик термометра. Для нагревания служит медная ванна E с двойными стенками, между которыми наливается вода или какая-нибудь другая жидкость, кипящая при известной температуре.

T1, t отверстия для выхода пара. L ручка ванны. В ванну E входит с легким трением другой медный цилиндр D, открытый внизу. M — его ручка. В цилиндре D фиксирован при помощи пробки термометр Θ. Корзиночка же p поддерживается внутри ванны при помощи нитки. После нагревания в течение продолжительного времени при одной и той же температуре (чтобы иметь полную уверенность, что все части тела приняли эту температуру) быстро вынимают цилиндр D из ванны за ручку М, поднимают над калориметром и перерезают нитку, поддерживающую корзиночку. Последняя падает в калориметр, в котором находится вода. Расчет производится по формуле:C = mM[(Θ − t)/(T − Θ)]K, где С искомая теплоемкостьТ температура тела в начале опытаΘ температура в концеК средняя теплоемкость воды в промежутке температуры от t до ΘM — вес телаM — вес воды в к-не + водяной эквивал.

Прибора (считая и корзиночку).T — начальная температура воды К (по Реньо) = 1 + 0,00015(t + Θ).Для веществ, растворимых в воде, ею изменяемых, наконец, для таких, которые не могут быть прямо нагреты на воздухе без изменения, приходится прибегать к разного рода предосторожностям. Вещество помещается в платиновую коробочку с тонкими стенками, хорошо закрывающуюся, или в стеклянную ампулку и проч. Для веществ, растворимых в воде без изменения, возможна и такая постановка опыта. Нагрев до известной температуры, орошают его в к-р и определяют количество выделившегося тепла, которое есть результат двух актов. Именно охлаждения тела и его растворения. Определив в отдельном опыте теплоту растворения тела (см. Ниже), вычитают ее из полученного результата.Теплоемкость жидкостей (см.) определяется довольно просто следующим образом.

Берется платиновая бутылочка емкостью от 50 до 100 куб. См, наполненная до 3/4 исследуемой жидкостью. Она плотно закрывается пробкой, через которую проходит термометр. Жидкость в бутылочке нагрета до известной температуры. В момент опыта ее энергично взбалтывают, отсчитывают ее темп. И, взявшись за термометр, быстро погружают бутылочку в воду к-ра, где продолжают взбалтывание. При этом, конечно, наблюдают темп. К-ра и жидкости. Когда разница между ними становится меньше 1°, бутылочку вынимают и наблюдают охлаждение к-ра. Вычисление по формуле, аналогичной приведенной выше.Теплота растворения твердого тела, например в воде, определяется таким образом. Если исследуемое вещество не изменяется на воздухе (напр. Не расплывается и пр.), прежде всего его превращают в очень тонкий порошок, чтобы ускорить растворение при опыте.

Потом старательно высушивают и, взявши навеску, оставляют в закрытой склянке некоторое время в калорим. Комнате, чтобы температура его сравнялась с темпер. Воды в к-ре. После того его бросают в к-р и сильно размешивают. Вещества гигроскопические, летучие и пр. Берутся в тонких стеклянных ампулках, которые во время опыта раздавливаются на дне к-ра особым платиновым пестиком. В некоторых случаях температура к-ра настолько падает, что он покрывается росой. Такие опыты отбрасываются, как неудачные, и повторяются с меньшим количеством вещества. Здесь должна быть известна теплоемкость полученного раствора. Во многих случаях приходится иметь дело со слабыми растворами, теплоемкость которых довольно близко может быть принята такая, как для воды.Для газообразных тел, если они жадно поглощаются водой (напр.

HCl, NH3 и пр.), делают так. Погрузив в к-р отводную трубку от прибора с исследуемым газом, температура которого такая же, как для воды в к-ре, наблюдают ход темпер. В к-ре, потом медленной струей пропускают в к-р газ при постоянном помешивании. Когда темп. К-ра поднялась на 2-3°, отводную трубку вынимают и наблюдают охлаждение к-ра. Количество растворенного газа определяется обычным способом (титрованием, осаждением и пр.), смотря по натуре газа. Если же газ не особенно хорошо растворяется или изменяется на воздухе и пр., опыт ведется в колбе около 750 куб. См емкости, закрытой пробкой с 3 дырами, через которые проходят 3 стеклянные трубки. Одна из трубок, идущая до дна, служит для притока газа, другая, кончающаяся у горла колбы, — отводная.

В третьей, более широкой, только слегка погруженной в жидкость, фиксируется термометр. Колба играет роль к-ра. Перед опытом воздух в ней заменяется каким-либо инертным газом. Наблюдение и все расчеты ведутся обычным путем. Если при этом колба точно взвешена до опыта и после, приняв в расчет количество улетучившейся жидкости, довольно точно можно определить вес растворенного газа. Само собою разумеется, необходимо заменить перед взвешиванием находящийся над жидкостью газ тем, который был в колбе до опыта. Это делается быстро, чтобы не было выделения растворенного газа.Теплота нейтрализации (см.). Готовят соответственные растворы кислоты и щелочи (обыкновенно здесь применяются растворы, содержащие 1 эквивалент вещества на 2 литра) и ставят их в калориметрическую комнату, один около другого, на продолжительное время, чтобы они приняли одну и ту же температуру.

Для опыта берут того и другого раствора, напр., по 300 куб. См, из них один осторожно выливают в к-р, а другой в измерительной колбе ставят рядом на столе в медный цилиндрический сосуд, посеребренный внутри, и помещают туда термометр. При этом по возможности стараются избегать нагревания жидкостей своим присутствием. Устроив все это, начинают наблюдать ход температуры в к-ре и в колбе, который, очевидно, будет несколько различен. Потом в известный момент быстро выливают все содержимое из колбы в к-р и продолжают наблюдение обычным порядком. Для расчета определяют из данных предварительного периода температуру той и другой жидкости в момент смешения, вычисляют обычным способом ту температуру, которую имел бы к-р в этот момент, если бы не было химического процесса, и, наконец, находят, насколько изменилась эта температура от выделившегося при реакции тепла, не забывая сделать поправку на охлаждение к-ра.

Обыкновенно при всех этих расчетах принимают теплоемкость растворов равной теплоемкости воды. Ошибки от подобного допущения незначительны. Узнав, сколько тепла выделилось при данном опыте, умножая на 2000/300, вычисляют величину для взаимодействия 1 эквивал. Кислоты с 1 эквивал. Щелочи.Теплота испарения жидкостей (см.) довольно просто определяется, по Бертело, следующим образом. Определение ведется при температуре кипения жидкости. Последняя помещается в сосуд F (фиг. 5), имеющий вид колбы с запаянным горлом. В дно ее впаяна тонкостенная трубка Т, открытая с обоих концов. Диаметр Т около 1 см, а длина нижней части 4-5 см.Фиг. 5. Прибор для определения теплоты испарения жидкостейДля наполнения F перевертывают и через воронку вводят в него некоторое количество жидкости, напр.

100 гр. Трубка Т закрывается стеклянной или обыкновенной пробкой. Для сгущения паров жидкости служит змеевик s с расширением в нижней части R и отводной трубкой t. Трубка Т входит в верхнюю часть змеевика о и хорошо к нему пришлифована. Нагревание производится кольцеобразной горелкой с дырочками. Во время опыта змеевик помещается в к-ре, причем отверстие его о только на несколько мм выше уровня воды. Для защиты к-ра от лампы служит экран сс из картона, закрывающий только 2/3 к-ра, чтобы можно было ввести в него термометр и можно бы было им размешивать жидкость. Пп проволочная сетка, служащая для той же цели. Опыт ведется следующим образом. Собрав прибор, зажигают горелку и наблюдают ход термометра. Несмотря на все предосторожности, к-р нагревается от лампы.

При правильной постановке опыта темп. К-ра (с 800-900 куб. См воды) изменяется от этого на 0,01° — 0,02° в минуту. Эта величина а (поправка на нагревание к-ра лампою в 1 мин.) вычисляется из наблюдений термометра с начала опыта до момента, когда жидкость закипит (I пер.). Когда жидкость закипела — что происходит здесь быстро, — пар поднимается и идет по трубке Т в змеевик, где и сгущается вполне. Так как отросток Т не велик, и, кроме того, он нагревается от лампы, то при быстром парообразовании температура пара не изменяется на этом пути. Когда температура к-ра поднялась на 3° — 4° — перегналось 20-30 гр. Жидкости — лампу гасят и удаляют F (конец II периода. Заткнув пробкой отверстие о, продолжают наблюдать ход температуры, пока она не станет правильно изменяться (III период).

По окончании опыта определяют количество перегнавшейся жидкости, взвешивая S, и для контроля F берут среднее. Для вычисления всего тепла, выделенного сгустившимся паром, определяют изменение темпер. К-ра в период кипения (II период). Делают поправку на нагревание к-ра за это время лампой, принимая, что от этой причины температура его в каждую минуту изменяется на одну и ту же величину, именно найденную в I пер., т. Е. Она равна an (где n продолжительность II периода). Далее, из тех наблюдений термометра в III период, когда он правильно стал опускаться, определяется охлаждение к-ра в 1 мин., отвечающее конечной темп. Опыта. Умножив найденную величину на продолжительность III периода и вычитая отсюда действительно наблюденное изменение температуры за это время, очевидно, найдем величину нагревания К.

Вследствие еще продолжающейся передачи тепла к нему от сгустившихся паров. Ее нужно прибавить к полученному результату. Чтобы получить теперь теплоту испарения жидкости при температуре Т (тем. Кипения), из полученного результата нужно вычесть количество тепла, выделенное жидкостью при охлаждении от Т до t (температура жидкости в конце опыта). Этот способ годен для жидкостей не слишком летучих. Для очень же летучих прибегают к другим приемам. Жидкость испаряется в самом калориметре и пр.Теплота плавления (см.) очень просто определяется следующим образом. Если тело плавится при температуре Т выше обыкновенной, то его плавят и при температуре t, несколько высшей Т, погружают в к-р. Выделившееся тепло, очевидно, образовано.

1) из теплоты, отвечающей охлаждению тела в жидком состоянии от t до Т и в твердом от Т до температуры конца опыта, и 2) из теплоты плавления (застывания). Зная теплоемкость тела в жидком и твердом состоянии, легко вычислить температуру плавления. Для веществ легкоплавких поступают наоборот. Берут их в твердом виде и плавят в к-ре. Вопрос сильно усложняется, когда при переходе из одного состояния в другое свойства тела так или иначе меняются.Теплота горения (см.) Из всех способов, предложенных для определения теплоты горения, наиболее удобным является способ Бертело. Горение здесь происходит в кислороде, сжатом до 20-25 атм. Оно идет быстро и обыкновенно до конца. Прибор, назначенный для этой цели, — так назыв.

Калориметрическая бомба Бертело — состоит из стального сосуда А с толстыми стенками, способными выдержать давление до 200-300 атм. (см. Фиг. 6).Фиг. 6. Калориметрическая бомба БертелоСнаружи он никелирован, внутри же выложен толстым слоем платины. К нему пришлифована крышка В, покрытая в нижней части платиной. В крышке находится винтовой кран а с каналом внутри, который служит для наполнения бомбы кислородом и для выпуска газов. Кроме того, в ней сделано небольшое отверстие, закрывающееся конусообразной пробкой. Последняя делается из платины и сверху покрыта слоем особой довольно мягкой эмали. Вверху она имеет винтовую нарезку. Вставив конус на свое место, надевают на него сверху эбонитовый или слоновой кости кружок и потом гайкой плотно прижимают конус к крышке.

Он является вполне изолированным от крышки. Так как эмаль с конуса легко отскакивает, то советуют вместо нее надевать на конус тонкую каучуковую трубку, стараясь, чтобы нижний конец ее не выдавался наружу. К конусу снизу прикреплена винтом толстая платиновая проволока с'. Другая проволока с привинчена к отростку на крышке. На одном конце ее находится платиновая чашечка с исследуемым веществом. Другой конец соединяется с с' тонкой железной проволочкой, свернутой спиралью. Железная спираль находится как раз над чашечкой. Она играет роль запала. Соединив один полюс батареи с конусом, а другим касаясь крышки, пропускают через проволочку сильный ток. Она сгорает в кислороде и воспламеняет взятое тело. Вес железной проволоки бывает известен.

Раз взвесив, ее берут определенной длины. Перед опытом нужно всегда убеждаться в хорошей изолировке конуса. Крышка сильно прижимается к бомбе гайкой С. Для этой цели, вставив осторожно крышку, бомбу зажимают в особые тиски, выложенные внутри свинцом, навинчивают гайку сначала прямо рукой, потом накладывают на нее особого рода массивную отвертку с шипами, соответствующими углублениям в гайке, и кончают завинчивание при помощи ключа. Чтобы достигнуть полной герметичности, крышку вверху слегка смазывают вазелином, расплавленным каучуком или, наконец, кремнеземом, приготовленным в виде желе. То же самое иногда делают и с изолированным конусом. В калориметре бомба ставится на особую подставку в виде треножника.

Для опыта бомба наполняется кислородом под давлением в 20-25 атм. Для этой цели пользуются или имеющимися в продаже резервуарами с кислородом, сгущенным до 120 атм., или же готовят его обычным путем и нагнетают в бомбу при помощи насоса. В последнем случае нужно принимать некоторые предосторожности. Накачивание должно производиться медленно — иначе может произойти воспламенение масла под поршнем насоса. Кроме того, должны быть приняты меры против проникновения масла вместе с кислородом в бомбу. Для этой цели у насоса ставится особый приемник с рядами сеточек для улавливания капелек масла. Потом кислород пропускается через накаленную медную трубку, наполненную слоем окиси меди, где последние следы масла сгорают.

Далее он идет по медной соединительной трубке, согнутой в виде змеевика и охлаждаемой снегом или водой, и уже после этого поступает в бомбу. Перед накачиванием кислорода обыкновенно смотрят, держит ли бомба. Для этого накачивают в нее воздух до 20 атм., погружают всю в воду и наблюдают, не выделяются ли где-либо пузырьки воздуха. После этого воздух выпускают, делают в ней пустоту и уже потом наполняют ее кислородом. Его берется некоторый избыток. В калориметрической бомбе могут определяться теплоты горения твердых веществ, жидких и газообразных. Наиболее простой случай, если берется твердое тело нелетучее, при обыкновенной температуре. Его стараются спрессовать в виде лепешки и в таком виде кладут в чашечку.

Этим избегается распыливание при накачивании в бомбу кислорода и во время горения. Когда нельзя этого достигнуть, вещество сплавляется с некоторым количеством какого-нибудь тела, теплота горения которого хорошо известна, напр. С нафталином или камфарой. Это делается также и тогда, когда вещество плохо загорается. Для сжигания летучих жидкостей поступают таким образом. Готовят из коллодиума маленький мешочек, отрезают у него нижнюю часть и, надев его слегка на небольшую платиновую цилиндрическую чашечку, хорошо к ней приклеивают коллодиумом же. Чашечку высушивают, взвешивают и осторожно наливают в нее исследуемую жидкость. После того шейку мешочка завяз.

Значения в других словарях
Калориметрия

(от лат. Calor — тепло и ...метрия (См. …метрия)) совокупность методов измерения тепловых эффектов (количеств теплоты), сопровождающих различные физические, химические и биологические процессы. Методами К. Определяют теплоёмкости (См. Теплоёмкость) тел, теплоты фазовых переходов (См. Теплота фазового перехода) (плавления, кипения и др.). Тепловые эффекты намагничивания, электризации, растворения, сорбции, химических реакций (например, горения (См. Горение)), процессов обмена веществ (См. Обмен в..

Калориметрия

КАЛОРИМЕТРИЯ - совокупность методов измерения тепловых эффектов, сопровождающих различные физические, химические и биологические процессы. Методами калориметрии определяют теплоемкости, теплоты фазовых переходов, тепловые эффекты химических реакций и т. П.. ..

Калонн Шарль-Александр

(de Calonne) — франц. Госуд. Деятель (1734-1802). Получив образование в Париже, К. Был адвокатом, генеральным прокурором при парламенте в Дуэ, интендантом в Меце и в Лилле. Друзья его при дворе Людовика XVI сумели выставить его как человека, способного вывести государство из критического положения, все более усложнявшегося (годовой дефицит достигал 50 млн.). Назначенный (1783 г.) ген.-контролером, К. Решил прибегнуть к займам, так как новых налогов король не желал да и народ не в состоянии был и..

Калоресценция

См. Лучистая теплота.. ..

Калориферы

Этим именем называют печи для отопления больших помещений одним центральным очагом через посредство нагретого воздуха, распределяемого по трубам. Иногда то же название придают и комнатным печам, снабженным воздушными каналами, как печи Собольщикова и др. Обыкновенно К. Центрального отопления состоит из воздушной камеры, окружающей самый нагревательный аппарат. В нижней ее части устроены отдушины, принимающие свежий воздух извне, а вверху начинаются трубы, отводящие воздух в отапливаемые помещени..

Калорические машины

Действуют посредством изменения объема воздуха вследствие попеременного нагревания и охлаждения. Двигатели эти потеряли в настоящее время всякое практическое значение. Термодинамика (см.) показала, что этого рода машины не представляют с теоретической стороны никакого преимущества против другого рода тепловых двигателей, а на практике они оказались непрочны, громоздки и дороги. Первая К. Машина была "пиреолофор Ниепса (1806), потом следовали столь же неудачные машины Каньяр-Латура, Монтгольфера ..

Калориметрия

Измерение теплоты. Более точно - измерение тепловых эффектов (количеств теплоты), сопровождающих физические, химические или биологические процессы. Калориметрия используется для определения удельной теплоемкости (количества тепла, необходимого для повышения температуры единицы массы или объема вещества на один градус), теплоты плавления или испарения (количества тепла, необходимого для плавления или испарения единицы массы или объема вещества) и теплоты реакций (количества тепла, выделяемого или..

Калориметрия

-и, ж.. ..

Калориметрия

(от лат. Calor - теплота и греч. Metron - мера). Измерение степени теплоты.(Источник. "Словарь иностранных слов, вошедших в состав русского языка". Чудинов А.Н., 1910)от лат. Calor, теплота, и греч. Metron, мера. Измерение степени теплоты.(Источник. "Объяснение 25000 иностранных слов, вошедших в употребление в русский язык, с означением их корней". Михельсон А.Д., 1865)отдел физики, занятый способами определения количества теплоты, выделяемой или поглощаемой телами при разных обстоятельствах.(Ис..

Калориметрия

Калориметрирование. ..

Калориметрия

Совокупность методов измерения тепловых эффектов, сопровождающих различные физические, химические и биологические процессы. Методами калориметрии определяют теплоемкости, теплоты фазовых переходов, тепловые эффекты химических реакций и т. П.. ..

Калориметрия

Ж.Совокупность методов измерения количества теплоты, выделяющейся или поглощаемой при каком-л. Физическом, химическом или биологическом процессе.. ..

Калориметрия

КАЛОРИМЕ́ТРИЯ -и. Ж. [от лат. Calor - тепло и греч. Metreō - измеряю] Совокупность методов измерения количеств теплоты, выделяемых или поглощаемых в различных физических и химических процессах.. ..

Калориметрия

Калориметрии, мн. Нет. Ж. (от латин. Calor - теплота и греч. Metreo - мерю) (физ.). Отдел физики, занимающийся измерением количества теплоты.. ..

Калориметрия

(калори- + греч. Metreo измерять) совокупность методов измерения количества тепла, выделяемого или поглощаемого в ходе физических, химических или биологических процессов. В медицине и биологии К. Применяется при исследовании энергетического обмена в организме.. ..

Калориметрия

(Калори- + греч. Metreō измерять)совокупность методов измерения количества тепла, выделяемого или поглощаемого в ходе физических, химических или биологических процессов. В медицине и биологии К. Применяется при исследовании энергетического обмена в организме.. ..

Калориметрия

(калори- + греч. Metreo измерять) - совокупность методов измерения количества тепла, выделяемого или поглощаемого в ходе физических, химических или биологических процессов. В медицине и биологии К. Применяется при исследовании энергетического обмена в организме.. ..

Калориметрия

Совокупность методов измерения тепловых эффектов, сопровождающих разл. Физ., хим. И биол. Процессы. Методами К. Определяют теплоёмкости, теплоты фазовых переходов, тепловые эффекты хим. Реакций и т. Н. ..

Калориметрия

(от лат. Calor - тепло и греч. Metreo - измеряю), совокупность методов измерения кол-ва теплоты, выделяющейся или поглощающейся в к.-л. Процессе. Для определения кол-ва теплоты используют спец. Приборы - калориметры. Совокупность частей калориметра, между к-рыми распределяется измеряемое кол-во теплоты, наз. Калориметрич. Системой. Она включает в себя калориметрич. Сосуд, в к-ром протекает изучаемый процесс, инструмент для измерения т-ры (ртутный термометр, термометр сопротивления, термопара ил..

Калориметрия

Методы измерения количества теплоты, выделяемой организмом (культурой микроорганизмов) в процессе жизнедеятельности за определенный промежуток времени. К. Позволяет определять общий уровень энергетических затрат организма.(Источник. «Микробиология. Словарь терминов», Фирсов Н.Н., М. Дрофа, 2006 г.). ..

Калориметрия

Совокупность методов измерения уд. Теплоёмкости в-в, а также тепловых эффектов разл. Физ.-хим. Процессов. Калориметрич. Измерения проводятся в широком интервале темп-р (от 0,1 до 4000 К) и давлений калориметрами. Дифференц. Сканирующая К. Применяется для идентификации в-в н изучения разл. Процессов. ..

Дополнительный поиск Калориметрия Калориметрия

Добавить комментарий
Комментарии
Комментариев пока нет

На нашем сайте Вы найдете значение "Калориметрия" в словаре Энциклопедия Брокгауза и Ефрона, подробное описание, примеры использования, словосочетания с выражением Калориметрия, различные варианты толкований, скрытый смысл.

Первая буква "К". Общая длина 12 символа