Эллиптический Интеграл

100

- интеграл от алгебраической функцииIрода, т. Е. Интеграл вида где R(z, w) - рациональная функция от переменных z и w, связанных алгебраич. Уравнением в к-ром f(z) - многочлен 3-й или 4-й степени без кратных корней. При этом обычно подразумевается, что интеграл (1) нельзя выразить через одни только элементарные функции. В том случае, когда такое выражение возможно, интеграл (1) наз. псевдоэллиптическим интегралом. Название Э. И. Связано с тем, что впервые они появились при спрямлении дуги эллипса и других кривых 2-го порядка в работах кон. 17 - нач. 18 вв. Я. Бернулли (J. Bernoulli), И. Бернулли (J. Bernoulli), Дж. К. Фаньяно деи Тоски (G. С. Fagnano dei Toschi), Л. Эйлер (L. Euler) заложили основы теории Э. И. И эллиптических функций, возникающих при обращении эллиптических интегралов.

Уравнению (2) соответствует двулистная компактная риманова поверхность Fрода g=l, гомеоморфная тору, на к-рой z, w, а следовательно, и R (z,w). Рассматриваемые как функции точки поверхности F, однозначны. Интеграл (1) задается как интеграл от абелева дифференциала на F, взятый вдоль нек-рого спрямляемого пути L. Задание начальной z0 и конечной z1 точек этого пути L, вообще говоря, не вполне определяет значение Э. И. (1), или, иначе говоря, Э. И. (1) есть многозначная функция от z0 и z1. Любой Э. И. Можно выразить в виде суммы элементарных функций и линейной комбинации канонич. Э. И. I, II и III рода. Последние записываются, напр., следующим образом. где с - параметр Э. И. III рода. Дифференциал I рода dz/w, соответствующий Э.

И. I рода I1, всюду на римановой поверхности . Конечен, дифференциалы II и III рода имеют соответственно особенность типа полюса с нулевым вычетом или простого полюса. Рассматриваемые как функции верхнего предела интегрирования при фиксированном нижнем пределе, все три Э. И. На Fмногозначны. Если же разрезать Fвдоль двух циклов базиса гомологии, то в получившейся односвязной области F* интегралы I1 и I2 будут однозначны, а интеграл I3 сохраняет еще логарифмич. Многозначность, появляющуюся при обходе простого полюса. При переходе через разрез каждый интеграл изменяется на целое кратное соответствующего периода, или модуля периодичности, а I3 имеет еще, кроме того, третий логарифмический период 2pi. соответствующий обходу особой точки.

Таким образом, вычисление интеграла типа (1) сводится к вычислению интеграла вдоль пути L*, соединяющего на F* точки z0 и z1, и прибавлению соответствующей линейной комбинации периодов. Подвергая переменное z нек-рым преобразованиям, можно привести функцию wиосновные Э. И. К нормальным формам. В нормальной форме Вейерштрасса выполняется соотношение и интеграл имеет периоды Обращение этого Э. И. Дает эллиптич. Функцию Вейерштрасса с периодами и инвариантами g2, g3 (см. Вейерштрасса эллиптические функции). Вычисление периодов по заданным инвариантам производится при помощи модулярной функции Если в нормальном интеграле II рода принять нормальный интеграл I рода . В качестве переменной интегрирования, то при надлежащем выборе постоянной интегрирования будет выполняться равенство где - дзета-функция Вейерштрасса.

При этом периоды нормального интеграла II рода равны Нормальный интеграл III рода по Вейерштрассу имеет вид где - сигма-функция Вейерштрасса, . При этом справедливо правило перестановки. где п - целое число. Периоды нормального интеграла III рода имеют вид где n1, n3- целые, -логарифмич. Период. В приложениях чаще встречается нормальная форма Лежандра. При этом где kназ. Модулем Э. И., k2 иногда наз. Лежандровым модулем, - дополнительным модулем. Чаще всего имеет место нормальный случай, когда 0<k<l, a z=x=sin t- действительное переменное. Э. И. I род а в нормальной форме Лежандра имеет вид он наз. Также неполным Э. И. I рода. наз. Амплитудой Э. И. I рода. Амплитуда есть бесконечнозначная функция от и. Обращение нормального интеграла I рода приводит к эллиптич.

Функции Якоби z=sn и(см. Якоби эллиптические функции). Нормальный интеграл II рода в нормальной форме Лежандра имрет вид он наз. Также неполным Э. И. II рода. Интегралы наз. Полными Э. И. Соответственно I и II рода. Лежандровы интегралы I рода имеют периоды 4K и 2iK', II рода - периоды 4E и 2i(K'-E'). Нормальный интеграл III рода в нормальной форме Лежандра имеет вид где n2- параметр, чаще всего При или k2<u2<1 он наз. Циркулярным интегралом, а при 0<п 2<k2 или 1<n2 - гиперболич. Интегралом. По Якоби нормальный интеграл III рода определяется несколько иначе. где n2=k2sn2a. Связь между интегралами III рода Якоби и Лежандра выражается формулой циркулярный характер соответствует мнимым a, гиперболический - действительным а.

Наряду с эллиптич. Функциями, Э. И. Находят многочисленные и важные применения в различных вопросах анализа и геометрии, физики, в частности механики, астрономии и геодезии. Составлены таблицы Э. И. Подробные руководства по теории Э. И. И эллиптич. Функций, а также сводки формул. Лит.:[1] Беляков В. М., Кравцова Р. П., Раппопорт М. Г., Таблицы эллиптических интегралов, т. 1-2 М., 1962-63. [2] Янке Е., Эмде Ф., Л ёш Ф., Специальные функции. Формулы, графики, таблицы, пер. С нем., 3 изд., М., 1977. См. Также лит. При ст. Эллиптическая функция. Е. Д. Соломенцев.

Значения в других словарях
Эллиптическая Функция

в собственном смысле - двоякопериодическая функция, мероморфная в конечной плоскости комплексного переменного г. Э. Ф. Обладают следующими основными свойствами. Не существует целых Э. Ф., кроме констант (теорема Лиувилля). Пусть - примитивные периоды Э. Ф. F(z), Сумма вычетов всех полюсов f(z) в ее параллелограмме периодов равна нулю. Пусть r - число полюсов (с учетом их кратности) Э. Ф. F(z) в параллелограмме периодов Тогда f(z) принимает в каждое конечное значение с учетом кратности в..

Эллиптические Координаты

- числа и связанные с декартовыми прямоугольными координатами формулами где Координатные линии (см. Рис.). Софокусные эллипсы и гиперболы =const) с фокусами и Система Э. К.- ортогональная. Каждой паре чисел и соответствуют 4 точки, по одной в каждом квадранте плоскости Оху, симметричные друг другу относительно осей Ох и Оу. Коэффициенты Ламе. Уравнение Лапласа допускает в Э. К. Разделение переменных. Вырожд енными Э. К. Наз. Числа и связанные с Э. К. и формулами (при а=1, b=0)..

Эллиптический Оператор

-линейный дифференциальный или псевдодифференциальный оператор с обратимым главным символом (см. Символ оператора). Пусть А- дифференциальный или псевдодифференциальный оператор (вообще говоря, матричный) на области с главным символом Если А- оператор порядка т, то -матричная функция на положительно однородная порядка тпо переменному Тогда эллиптичность означает, что -обратимая матрица при всех Это понятие эллиптичности наз. Эллиптичностью по Петровскому. Другой вид эллиптичности, эл..

Эллиптический Параболоид

- незамкнутая поверхность второго порядка. Канонич. Уравнение Э. П. Имеет вид Э. П. Расположен по одну сторону от плоскости Оху (см. Рис.). Сечения Э. П. Плоскостями, параллельными плоскости Оху, являются эллипсами с равным эксцентриситетом (если р=q - окружностями, Э. П. Наз. Параболоидом вращения). Сечения Э. П. Плоскостями, проходящими через ось Oz, являются параболами. Сечения Э. П. Плоскостями Oyz и Oxz наз. Главными параболами Э. П. Ось симметрии Э. П. Наз. Его осью, а точка пересе..

Дополнительный поиск Эллиптический Интеграл Эллиптический Интеграл

Добавить комментарий
Комментарии
Комментариев пока нет

На нашем сайте Вы найдете значение "Эллиптический Интеграл" в словаре Математическая энциклопедия, подробное описание, примеры использования, словосочетания с выражением Эллиптический Интеграл, различные варианты толкований, скрытый смысл.

Первая буква "Э". Общая длина 22 символа