Лобачевского геометрия

82

геометрическая теория, основанная на тех же основных посылках, что и обычная Евклидова геометрия, за исключением аксиомы о параллельных, которая заменяется на аксиому о параллельных Лобачевского. Евклидова аксиома о параллельных гласит. Через точку, не лежащую на данной прямой, проходит только одна прямая, лежащая с данной прямой в одной плоскости и не пересекающая её. В Л. Г. Вместо неё принимается следующая аксиома. Через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её. Казалось бы, эта аксиома противоречит чрезвычайно привычным представлениям. Тем не менее как эта аксиома, так и вся Л. Г. Имеет вполне реальный смысл (о чём см.

Ниже). Л. Г. Была создана и развита Н. И. Лобачевским (См. Лобачевский), который впервые сообщил о ней в 1826. Л. Г. Называется неевклидовой геометрией, хотя обычно термину «неевклидова геометрия» придают более широкий смысл, включая сюда и др. Теории, возникшие вслед за Л. Г. И также основанные на изменении основных посылок евклидовой геометрии. Л. Г. Называется специально гиперболической неевклидовой геометрией (в противоположность эллиптической геометрии Римана) (см. Неевклидовы геометрии, Римана геометрия). Л. Г. Представляет теорию, богатую содержанием и имеющую применение как в математике, так и в физике. Историческое её значение состоит в том, что её построением Лобачевский показал возможность геометрии, отличной от евклидовой, что знаменовало новую эпоху в развитии геометрии и математики вообще (см.

Геометрия). С современной точки зрения можно дать, например, следующее определение Л. Г. На плоскости. Она есть не что иное, как геометрия внутри круга на обычной (евклидовой) плоскости, лишь выраженная особым образом. Именно, будем рассматривать круг на обычной плоскости (рис. 1) и внутренность его, т. Е. Круг, за исключением ограничивающей его окружности, назовем «плоскостью». Точкой «плоскости» будет точка внутри круга. «Прямой» будем называть любую хорду (например, а, b, b', MN) (с исключенными концами, т. К. Окружность круга исключена из «плоскости»). «Движением» назовем любое преобразование круга самого в себя, которое переводит хорды в хорды. Соответственно, равными называются фигуры внутри круга, переводящиеся одна в другую такими преобразованиями.

Тогда оказывается, что любой геометрический факт, описанный на таком языке, представляет теорему или аксиому Л. Г. Иными словами, всякое утверждение Л. Г. На плоскости есть не что иное, как утверждение евклидовой геометрии, относящееся к фигурам внутри круга, лишь пересказанное в указанных терминах. Евклидова аксиома о параллельных здесь явно не выполняется, т. К. Через точку О, не лежащую на данной хорде а (т. Е. «прямой»), проходит сколько угодно не пересекающих её хорд («прямых») (например, b, b'). Аналогично, Л. Г. В пространстве может быть определена как геометрия внутри шара, выраженная в соответствующих терминах («прямые» — хорды, «плоскости» — плоские сечения внутренности шара, «равные» фигуры — те, которые переводятся одна в другую преобразованиями, переводящими шар сам в себя и хорды в хорды).

Таким образом, Л. Г. Имеет совершенно реальный смысл и столь же непротиворечива, как геометрия Евклида. Описание одних и тех же фактов в разных терминах или, напротив, описание разных фактов в одних и тех же терминах представляет характерную черту математики. Она ясно выступает, например, когда одна и та же линия задаётся в разных координатах разными уравнениями или, напротив, одно и то же уравнение в разных координатах представляет различные линии. Возникновение геометрии Лобачевского. Источником Л. Г. Послужил вопрос об аксиоме о параллельных, которая известна также как V постулат Евклида (под этим номером утверждение, эквивалентное приведённой выше аксиоме о параллельных, фигурирует в списке постулатов в «Началах» Евклида (См.

Начала Евклида)). Этот постулат, ввиду его сложности в сравнении с другими, вызвал попытки дать его доказательство на основании остальных постулатов. Вот неполный перечень учёных, занимавшихся доказательством V постулата до 19 в. Древнегреческий математики Птолемей (2 в.), Прокл (5 в.) (доказательство Прокла основано на предположении о конечности расстояния между двумя параллельными), Ибн аль-Хайсам из Ирака (конец 10 — начало 11 вв.) (Ибн аль-Хайсам пытался доказать V постулат, исходя из предположения, что конец движущегося перпендикуляра к прямой описывает прямую линию), таджикский математик Омар Хайям (2-я половина 11 — начало 12 вв.), азербайджанский математик Насирэддин Туей (13 в.) (Хайям и Насирэддин при доказательстве V постулата исходили из предположения, что две сходящиеся прямые не могут при продолжении стать расходящимися без пересечения), немецкий математик К.

Клавий (Шлюссель, 1574), итальянские математики П. Катальди (впервые в 1603 напечатавший работу, целиком посвященную вопросу о параллельных), Дж. Борелли (1658), Дж. Витале (1680), английский математик Дж. Валлис (1663, опубликовано в 1693) (Валлис основывает доказательство V постулата на предположении, что для всякой фигуры существует ей подобная, но не равная фигура). Доказательства перечисленных выше геометров сводились к замене V постулата др. Предположением, казавшимся более очевидным. Итальянский математик Дж. Саккери (1733) сделал попытку доказать V постулат от противного. Приняв предложение, противоречащее постулату Евклида, Саккери развил из него довольно обширные следствия. Ошибочно признав некоторые из этих следствий приводящими к противоречиям, Саккери заключил, что постулат Евклида доказан.

Немецкий математик И. Ламберт (около 1766, опубликовано в 1786) предпринял аналогичные исследования, однако он не повторил ошибки Саккери, а признал своё бессилие обнаружить в построенной им системе логическое противоречие. Попытки доказательства постулата предпринимались и в 19 в. Здесь следует отметить работы французского математика А. Лежандра. Одно из его доказательств (1800) основано на допущении, что через каждую точку внутри острого угла можно провести прямую, пересекающую обе стороны угла, т. Е., как и все его предшественники, он заменил постулат др. Допущением. Довольно близко к построению Л. Г. Подошли немецкие математики Ф. Швейкарт (1818) и Ф. Тауринус (1825), однако ясно выраженной мысли о том, что намечаемая ими теория будет логически столь же совершенна, как и геометрия Евклида, они не имели.

Вопрос о V постулате Евклида, занимавший геометров более двух тысячелетий, был решен Лобачевским. Это решение сводится к тому, что постулат не может быть доказан на основе др. Посылок евклидовой геометрии и что допущение постулата, противоположного постулату Евклида, позволяет построить геометрию столь же содержательную, как и евклидова, и свободную от противоречий. Лобачевский сделал об этом сообщение в 1826, а в 1829—30 напечатал работу «О началах геометрии» с изложением своей теории. В 1832 была опубликована работа венгерского математика Я. Больяй аналогичного содержания. Как выяснилось впоследствии, немецкий математик К. Ф. Гаусс также пришёл к мысли о возможности существования непротиворечивой неевклидовой геометрии, но скрывал её, опасаясь быть непонятым.

Хотя Л. Г. Развивалась как умозрительная теория и сам Лобачевский называл её «воображаемой геометрией», тем не менее именно Лобачевский рассматривал её не как игру ума, а как возможную теорию пространственных отношений. Однако доказательство её непротиворечивости было дано позже, когда были указаны её интерпретации и тем полностью решен вопрос о её реальном смысле, логической непротиворечивости. Интерпретации (модели) геометрии Лобачевского. Л. Г. Изучает свойства «плоскости Лобачевского» (в планиметрии) и «пространства Лобачевского» (в стереометрии). Плоскость Лобачевского — это плоскость (множество точек), в которой определены прямые линии, а также движения фигур (вместе с тем — расстояния, углы и пр.), подчиняющиеся всем аксиомам евклидовой геометрии, за исключением аксиомы о параллельных, которая заменяется указанной выше аксиомой Лобачевского.

Сходным образом определяется пространство Лобачевского. Задача выяснения реального смысла Л. Г. Состояла в нахождении моделей плоскости и пространства Лобачевского, т. Е. В нахождении таких объектов, в которых реализовались бы соответствующим образом истолкованные положения планиметрии и стереометрии Л. Г. (об интерпретации вообще см. Геометрия, раздел Истолкования геометрии). Итальянский математик Э. Бельтрами в 1868 заметил, что геометрия на куске плоскости Лобачевского совпадает с геометрией на поверхностях постоянной отрицательной кривизны, простейший пример которых представляет Псевдосфера (рис. 2). Если точкам и прямым на конечном куске плоскости Лобачевского сопоставлять точки и кратчайшие линии (геодезические) на псевдосфере и движению в плоскости Лобачевского сопоставлять перемещение фигуры по псевдосфере с изгибанием, т.

Е. Деформацией, сохраняющей длины, то всякой теореме Л. Г. Будет отвечать факт, имеющий место на псевдосфере. Т. О., Л. Г. Получает простой реальный смысл. При этом длины, углы, площади понимаются в смысле естественного измерения их на псевдосфере. Однако здесь даётся интерпретация только геометрии на куске плоскости Лобачевского, а не на всей плоскости и тем более не в пространстве (в 1901 Д. Гильберт доказал даже, что вообще в евклидовом пространстве не может существовать регулярной поверхности, геометрия на которой совпадает с геометрией всей плоскости Лобачевского). В 1871 Ф. Клейн указал ту модель как всей плоскости, так и пространства Лобачевского, которая была описана выше и в которой плоскостью служит внутренность круга, а пространством — внутренность шара.

Между прочим, в этой модели расстояние между точкам (рис. 1) определяется как Рис. 1 к ст. Лобачевского геометрия. Рис. 2 к ст. Лобачевского геометрия. Рис. 3 к ст. Лобачевского геометрия..

Значения в других словарях
Лобачевский

Николай Иванович [20.11(1.12).1792, Нижний Новгород, ныне г. Горький, — 12 (24).2.1856, Казань], русский математик, создатель неевклидовой геометрии, мыслитель-материалист, деятель университетского образования и народного просвещения. Родился в семье мелкого чиновника. Почти всю жизнь Л. Провёл в Казани. Там он учился в гимназии (1802—07) на казённом содержании, затем в Казанском университете (1807—11). Рано обнаружил выдающиеся способности, по окончании университета получил степень магистра (1..

Лобачевский Николай Иванович

Лобачевский Николай Иванович [20.11(1.12).1792, Нижний Новгород, ныне г. Горький, ≈ 12 (24).2.1856, Казань], русский математик, создатель неевклидовой геометрии, мыслитель-материалист, деятель университетского образования и народного просвещения. Родился в семье мелкого чиновника. Почти всю жизнь Л. Провёл в Казани. Там он учился в гимназии (1802≈07) на казённом содержании, затем в Казанском университете (1807≈11). Рано обнаружил выдающиеся способности, по окончании университета получил степень ..

Лобачевского метод

метод приближённого (численного) решения алгебраических уравнений, найденный независимо друг от друга бельгийским математиком Ж. Данделеном, русским математиком Н. И. Лобачевским (в 1834 в наиболее совершенной форме) и швейцарским математиком К. Греффе. Суть Л. М. Состоит в построении уравнения f1(x) = 0, корни которого являются квадратами корней исходного уравнения f(x) = 0. Затем строят уравнение f2(x) = 0, корнями которого являются квадраты корней уравнения f1(x) = 0. Повторяя этот процесс н..

Лобашёв

I Владимир Михайлович (р. 29.7.1934, Ленинград), советский физик, член-корреспондент АН СССР (1970). Член КПСС с 1970. Окончил ЛГУ (1957). В 1957—72 работал в Физико-техническом институте АН СССР. С 1972 в институте ядерных исследований АН СССР. Основные работы в области экспериментальной ядерной физики. Исследовал эффекты, возникающие при бета-распаде ядер, предложил методику измерения малой циркулярной поляризации гамма-квантов, применение которой в исследовании гамма-излучения ядер привело к ..

Лобачевского Геометрия

ЛОБАЧЕВСКОГО геометрия - построенная в 1826 Н. И. Лобачевским геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы (постулата) о параллельных. Евклидова аксиома гласит. В плоскости через точку, не лежащую на данной прямой, можно провести одну, и только одну, прямую, параллельную данной, т. Е. Ее не пересекающую. В геометрии Лобачевского эта аксиома заменена следующей. В плоскости через точку, не лежащую на данной прямой, можно п..

Лобачевского Геометрия

(неевклидова геометрия), геометрическая теория (1826), построенная великим русским математиком Н. И. Лобачевским. Ученый доказал, что геометрия Евклида есть только одна из нескольких равноправных геометрий, одинаково безупречных, одинаково полноценных логически, одинаково истинных в качестве математических теорий.Источник. Энциклопедия "Русская цивилизация". ..

Лобачевского Геометрия

Построенная в 1826 Н. И. Лобачевским геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы (постулата) о параллельных. Евклидова аксиома гласит. В плоскости через точку, не лежащую на данной прямой, можно провести одну, и только одну, прямую, параллельную данной, т. Е. Ее не пересекающую. В геометрии Лобачевского эта аксиома заменена следующей. В плоскости через точку, не лежащую на данной прямой, можно провести более одной прямо..

Лобачевского Геометрия

Построенная в 1826 Н. И. Лобачевским геом. Теория, осн. На тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы (постулата) о параллельных. Евклидова аксиома гласит. В плоскости через точку, не лежащую на данной прямой, можно провести одну, и только одну, прямую, параллельную данной, т. Е. Её не пересекающую. В Л. Г. Эта аксиома заменена следующей. В плоскости через точку, не лежащую на данной прямой, можно провести более одной прямой, не пересекающей данной. В Л. ..

Лобачевского Геометрия

Построенная в 1826 Н. И. Лобачевским геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы (постулата) о параллельных. Евклидова аксиома гласит. В плоскости через точку, не лежащую на данной прямой, можно провести одну, и только одну, прямую, параллельную данной, т. Е. Ее не пересекающую. В геометрии Лобачевского эта аксиома заменена следующей. В плоскости через точку, не лежащую на данной прямой, можно провести более одной прямо..

Дополнительный поиск Лобачевского геометрия Лобачевского геометрия

Добавить комментарий
Комментарии
Комментариев пока нет

На нашем сайте Вы найдете значение "Лобачевского геометрия" в словаре Большая Советская энциклопедия, подробное описание, примеры использования, словосочетания с выражением Лобачевского геометрия, различные варианты толкований, скрытый смысл.

Первая буква "Л". Общая длина 22 символа