Гельмгольца — Кирхгофа теория обтекания

161

— подход к исследованию безвихревых течений идеальной несжимаемой жидкости при наличии поверхностей тангенциального разрыва в отсутствие массовых сил. Был предложен Г. Гельмгольцем в 1868 и Г. Кирхгофом в 1869. Наиболее эффективно этот метод используется для исследования плоских течений. В задачах обтекания тел безграничным однородным потоком анализ базируется на схеме течения, характерной особенностью которой является отход линий тока от поверхности обтекаемого контура в точках B1 и B2. Эти свободные линии тока есть линии тангенциального разрыва, отделяющие область потенциального течения I от застойной зоны II. Так как давление в покоящейся невесомой жидкости постоянно, то в зоне II оно равно давлению на бесконечности, а вследствие его непрерывности при переходе через свободные линии тока B1C2 и B1C2 значение скорости на каждой из них в силу Бернулли уравнения равно значению скорости V(∞) невозмущенного потока.

Форма свободных линий тока подлежит определению. Задача решается в плоскости комплексного переменного z = x + iy с началом координат в критической точке A. Если ввести комплексный потенциал (ω) = (φ) + i(ψ) такой, что потенциал скорости (φ)(х, у) и функция тока (ψ)(x, у) в точке A принимают нулевые значения, то в плоскости (ω) области течения I соответствует вся плоскость кроме разреза вдоль положительной оси (φ). Между плоскостью (ω) и областью течения I в плоскости z существует взаимно-однозначное соответствие, нахождение которого и решает задачу. Вместо отыскания зависимости между z и (ω) Кирхгоф поставил задачу о так называемом конформном отображении разрезанной плоскости (ω) на ту часть плоскости переменной (ξ) = dz/d(ω) = 1/(V) = exp(i(Θ))/V, которая соответствует области течения I в плоскости z (здесь (V) — величина.

Комплексно-сопряжённая скорости Vехр(i(Θ)), V и (Θ) — модуль и угол наклона к оси x вектора скорости V). Н. Е. Жуковский (1890) и английский учёный Митчелл (1890) видоизменили метод Кирхгофа путём введения переменкой (ξ) = ln(V(∞)/(V)) = ln(V(∞)/V) + i(Θ). В обоих случаях отыскание конформного отображения проводится достаточно просто при обтекании контуров, состоящих из прямолинейных отрезков. Для анализа обтекания тела с криволинейным контуром метод был модифицирован в 1907 итальянским учёным Т. Леви-Чивита введением переменной (ξ) = iln(V) = (Θ) + ilnV.Типичным примером является обтекание плоской пластины шириной 2b, установленной перпендикулярно потоку. Решение задачи показывает, что свободные линии тока, простираясь вниз по потоку, асимптотически приближаются к параболе y2 = 8bx/((π) + 4), а коэффициент сопротивления (см.

Аэродинамические коэффициенты) cx = 2(π)/((π) + 4) = 0,88 и значительно отличается от экспериментального значения cx = 2,0. Это различие обусловлено значительно более низким уровнем давления на задней стороне пластины (см. Донное сопротивление) и связано с неустойчивостью тангенциальных разрывов в жидкости. Поэтому в реальных потоках отрывная зона позади тела не простирается до бесконечности и имеет размеры порядка размеров обтекаемого тела. Течение в следе аэродинамическом является нестационарным. Г. — К. Т. О. Широко применяется в гидродинамике капельной жидкости для анализа плоских и осесимметричных задач. Глиссирование, истечение струй из отверстий и насадок и т. Д..

Значения в других словарях
Гелиоэнергетика

отрасль энергетики, в которой для получения электрической и тепловой энергии используется лучистая энергия Солнца. Энергия солнечного излучения относится к возобновляемым природным видам энергии наряду с гидравлической и геотермальной. Её общее количество, получаемое поверхностью Земли за год, составляет ок. 1018 кВт·ч, что более чем в 20 000 раз превышает современный уровень мирового энергопотребления. Наиболее целесообразно и перспективно использование энергии Солнца для энергоснабжения потре..

Гельмгольц Герман Людвиг Фердинанд

(1821—1994) — немецкий физик, математик, физиолог, психолог, иностранный член-корреспондент Петербургской АН (1868). Учился в Военно-медицинском институте в Берлине. С 1849 профессор. С 1888 директор Государственного физико-технического института в Берлине. Заложил основы теории вихревого движения жидкости. Доказал основные теоремы и вывел уравнение для распределения вихрей в пространстве и во времени в движущейся идеальной жидкости. Один из основоположников теории обтекания жидкостью тел с от..

Генератор электрический

устройство, преобразующее механическую, тепловую, электромагнитную, световую и другие виды энергии в электрическую. К таким устройствам относятся турбо – и гидрогенераторы, термогенераторы, магнитогидродинамические генераторы, термоэмиссионные преобразователи, солнечные батареи, атомные и изотопные батареи. Все эти устройства считаются физическими источниками тока, в отличие от химических источников, вырабатывающих электрическую энергию в результате окислительно-восстановительных реакций (гальв..

Генератор электрических колебаний

устройство для преобразования различных видов электрической энергии в энергию электрических (электромагнитных) колебаний. По форме электрических колебаний различают. Генераторы синусоидальных (гармонических) колебаний, импульсные генераторы, генераторы колебаний специальной формы. Генерирование электрических колебаний осуществляется обычно путём преобразования энергии источников постоянного тока с помощью электронных приборов. В зависимости от типа применяемых приборов различают генераторы на э..

Дополнительный поиск Гельмгольца — Кирхгофа теория обтекания Гельмгольца — Кирхгофа теория обтекания

Добавить комментарий
Комментарии
Комментариев пока нет

На нашем сайте Вы найдете значение "Гельмгольца — Кирхгофа теория обтекания" в словаре Энциклопедия техники, подробное описание, примеры использования, словосочетания с выражением Гельмгольца — Кирхгофа теория обтекания, различные варианты толкований, скрытый смысл.

Первая буква "Г". Общая длина 39 символа