Электромиография

57

IЭлектромиографи́яметод электрофизиологической диагностики поражений нервно-мышечной системы, состоящий в регистрации электрической активности (биопотенциалов) скелетных мышц. Различают спонтанную электромиограмму, отражающую состояние мышц в покое или при мышечном напряжении (произвольном или синергическом), а также вызванную, обусловленную электрической стимуляцией мышцы или нерва. Э. Позволяет проводить топическую диагностику поражения нервной и мышечной систем (надсегментарных пирамидных и экстрапирамидных структур, мотонейронов передних рогов, спинномозговых корешков и нервов, нервно-мышечного синапса и собственно иннервируемой мышцы), оценивать тяжесть, стадию, течение заболевания, эффективность применяемой терапии.

Аппаратура для Э. Состоит из двух основных блоков — электромиографа и электростимулятора. Электромиограф усиливает мышечные биопотенциалы и обеспечивает минимальный уровень помех («шумов»). Современные электромиографы — компактные компьютерные системы, с помощью которых проводят исследование по заданной программе. Аппаратура позволяет получать запись минимальных по амплитуде биопотенциалов, производить автоматический оперативный обсчет амплитуды, частоты и длительности латентных периодов, спонтанных и вызванных потенциалов мышц и нервов, осуществлять их спектральный анализ. Возможность усреднения кривых, высокий коэффициент усиления при низком уровне «шумов» обеспечивают возможность использования этих аппаратов и при записи и анализе стволовых и корковых вызванных потенциалов.

Используются различные модели электромиографов и электростимуляторов. Двухканальный электромиограф ЭМГ СТ-01, а также электромиографы М-440, М-500 и др. Отведение потенциалов действия мышцы осуществляют при помощи поверхностных электродов, накладываемых на кожу над исследуемой мышцей, или игольчатых, вводимых в мышцу. Поверхностные электроды представляют собой парные металлические пластины (олово, серебро, и др.) размером 10×5 мм, которые накладывают на расстоянии друг от друга 20—25 мм для взрослых и 10—15 мм для детей. Они используются для регистрации биоэлектрической активности значительного участка мышцы, включающего десятки и сотни функционирующих единиц, результирующая электромиограммы носит название глобальной.

Игольчатый электроды применяются для локального отведения биопотенциалов отдельных двигательных единиц (локальная электромиограмма). Оба метода отведения используются самостоятельно или в сочетании, однако у новорожденных и детей раннего возраста чаще исследуют глобальную электромиограмму. Электрическую стимуляцию мышц и нервов для исследования вызванных мышечных и невральных потенциалов осуществляют обычно с помощью поверхностных стимулирующих электродов с межэлектродным расстоянием от 10 до 20 мм. Применяют пластинчатые или вилочковые электроды в зависимости от глубины залегания стимулируемого нервного ствола. Исследованию подвергают не только те мышцы, которые наиболее патологически изменены. Но и симметричные им, а также другие группы мышц, находящиеся в функциональной взаимосвязи с преимущественно пораженными.

Каждую мышцу исследуют в нескольких режимах. В покое, при синергических непроизвольных мышечных напряжениях и при максимальном по силе мышечном сокращении. С мышцы, находящейся в состоянии максимально возможного расслабления, т.е. В режиме покоя, биоэлектрическая активность в норме не регистрируется. При слабом мышечном сокращении появляются осцилляции с амплитудой 100—150 мкВ. При максимальном произвольном мышечном сокращении амплитуда осцилляций индивидуальна, как и сила людей, различающихся по возрасту и физическому здоровью, и может достигать в норме 1000)—3000 мкВ. В этих случаях регистрируется так называемая интерференционная кривая, обусловленная асинхронным возбуждением клеток передних рогов спинного мозга и двигательных единиц мышцы, потенциалы действия которых становятся более интенсивными и продолжительными.

В зависимости от уровня поражения нервной и нервно-мышечной систем при Э. Выявляются дифференцированные изменения (рис. 1, 2). При первичном мышечном поражении (прогрессирующие мышечные дистрофии, миозиты и др.) отмечается снижение амплитуды осцилляций, соответствующее тяжести атрофии мышц и снижению их силы (до 20—150 мкВ при максимальном усилии). В начальных стадиях заболевания и при медленно прогрессирующем процессе максимальная амплитуда осцилляций может длительное время сохраняться субнормальной (до 500 мкВ). На локальной электромиограмме обнаруживается нормальное общее число потенциалов действия, но уменьшенных по амплитуде и длительности, что обусловлено уменьшением количества мышечных волокон, способных к активации.

В качестве компенсации происходит мобилизация большего количества двигательных единиц, обеспечивающих выполнение движений, что проявляется усилением интерференции и числи полифазных (многофазных) потенциалов. Поражения периферических нервных стволов (наследственные, метаболические, токсические и другие полиневропатии) на глобальной электромиограмме выявляются урежением осцилляций, возникновением неравномерных по амплитуде и частоте одиночных потенциалов на фоне низкоамплитудной активности. На локальной электромиограмме обнаруживаются полифазные потенциалы действия с амплитудой и продолжительностью, близкими к норме. В случае тяжелой невропатии с гибелью большинства нервных волокон наступает постепенное угнетение биоэлектрической активности мышц вплоть до полного биоэлектрического молчания.

При спинальных амиотрофиях Верднига — Гоффманна, Кугельберга — Веландер, переднероговом полиомиелите и других спинальных процессах на глобальной электромиограмме в покое регистрируется спонтанная биоэлектрическая активность в виде ритмичных фасцикуляций с амплитудой до 100—400 мкВ. Максимальная сила сокращения проявляется высоко-амплитудными ритмичными потенциалами, отражающими процесс синхронизации двигательных единиц («ритм частокола»). Локальная электромиограмма характеризуется избыточным количеством потенциалов действия со снижением степени их интерференции. Характерные изменения определяются при Э. У больных с миотоническими синдромами. В этих случаях выявляется миотоническое последействие. После прекращения произвольного сокращения мышцы над ней еще длительное время регистрируется высокочастотная низкоамплитудная электрическая активность с постепенным затуханием.

При длительном «выслушивании» активности мышц через звуковой усилитель в режиме покоя периодически удается уловить чрезвычайно специфический звук «пикирующего бомбардировщика». Для локальной электромиограммы при миотонии характерны признаки повышенной возбудимости мышечных волокон. При введении игольчатого электрода в мышцу регистрируется серия потенциалов действия одинаковой амплитуды. Нарушения нервно-мышечной синаптической передачи, составляющие основу миастенических синдромов, обнаруживаются при повторной ритмической стимуляции нерва сериями супрамаксимальных стимулов длительностью от 1 до 5 с и интервалами между сериями 10 с. Частоту стимуляции увеличивают от 3 до 50 в 1 с. Признаком миастении является прогрессирующее снижение амплитуды вызванного мышечного ответа.

В тяжелых случаях этот феномен выявляется при частоте стимуляции 3 в 1 с по соотношению амплитуд мышечного ответа на пятый и первый стимулы в первой же серии стимулов. Дифференциация собственно миастении от миастенических синдромов требует применения специальных сложных методик. При нарушении надсегментарных влияний на мотонейроны передних рогов спинного мозга, в частности при паркинсонизме, эссенциальном вегетативном треморе, на глобальной электромиограмме регистрируются специфические качественные изменения в виде ритмически повторяющихся «залпов» веретенообразного повышения и последующего снижения амплитуды осцилляций. Длительность «залпов» и их частота зависят от генеза и локализации поражения в ц.н.с., но чаще свидетельствуют о заинтересованности структур экстрапирамидной системы.

Развитие стимуляционной Э., изучение изменений основных характеристик вызванных мышечного и неврального ответов, а также скорости проведения импульса по двигательным и чувствительным волокнам нервов при заболеваниях ц.н.с. И периферической нервной системы широко используются в клинической неврологической практике. Особое значение метод имеет в диагностике невропатий, поскольку поражение нервов, прежде всего демиелинизирующего типа, сопровождается выраженным снижением скорости проведения импульса по нервным волокнам. Наиболее резкое снижение (до 5% от нормальной величины) скорости наблюдается при синдроме Русси — Леви. Возможность исследования скорости проведения импульса практически в любом отрезке (сегменте) нерва от спинномозговых корешков до терминальных ветвей на кисти и стопе позволяет точно локализовать участок повреждения нервного ствола (например, при его травматическом поражении) и определить место микрохирургического вмешательства.

Основным методом определения скорости проведения импульса (СПИ) ни нерву является стимуляция нервного ствола в двух точках (проксимальной и дистальной) с последующим измерением разности латентных периодов вызванных мышечных ответов или ответов чувствительных волокон нервов (рис. 3, 4). Вычисляют СПИ по двигательным или чувствительным волокнам, используя формулу. СПИ = ,где СПИ выражается в м/с, Р — расстояние между точками стимуляции в миллиметрах, а Т — разность латентных периодов мышечного и неврального ответов при стимуляции в проксимальной и дистальной точках в миллисекундах. Амплитуда вызванного мышечного ответа снижается при большинстве нервно-мышечных заболеваний, но в большей степени при спинальных и невральных амиотрофиях.

Снижение амплитуды вызванного неврального ответа является важным диагностическим критерием поражения аксона периферических нервных волокон даже при отсутствии выраженного снижения скорости проведения импульса по нерву. Важное значение в диагностике имеют регистрация рефлекторного мышечного ответа (Н-рефлекс) и сопоставление его амплитуды с амплитудой прямого вызванного мышечного ответа (М-ответ). Амплитуда Н-рефлекса и соотношение Н/М косвенно отражают уровень сегментарной рефлекторной активности и нарастают при пирамидной недостаточности, сопровождающейся «растормаживанием» сегментарной рефлекторной деятельности. У новорожденных скорость проведения импульса примерно в 2—3 раза ниже, чем у взрослых, только к 7—16 годам достигает значений, регистрируемых у взрослых.

На первом году жизни при физиологической незрелости пирамидной системы с большим постоянством определяется Н-рефлекс, в т.ч. С мышц кисти и стопы, в отличие от взрослых, у которых он регистрируется лишь с мышц задней группы голени. Библиогр. Бадалян Л.О. И Скворцов И.А. Электронейромиография, М., 1986. Зенков Л.Р. И Ронкин М.А. Функциональная диагностика нервных болезней, с. 346, М., 1982.Рис. 2в). Электромиограмма при поражении передних рогов спинного мозга..

Значения в других словарях
Электромиограмма

(Электро- + Миограмма, ЭМГ)кривая, отражающая изменения во времени разности потенциалов электрического поля (биопотенциалов) скелетной мышцы.. ..

Электромиограф

(Электро- + Миограф)прибор для графической регистрации изменений во времени разности потенциалов электрического поля (биопотенциалов) скелетных мышц.. ..

Электромиомастикациография

(Электро- + греч. Mys, myos мышца + Мастикациография)одновременная графическая регистрация изменений биопотенциалов жевательных мышц и движений нижней челюсти.. ..

Электромиостимулятор

(Электро- + греч. Mys, myos мышца + стимулятор (Стимулятор импульсный))аппарат для раздражения мышц электрическими импульсами с заданными параметрами.. ..

Дополнительный поиск Электромиография Электромиография

Добавить комментарий
Комментарии
Комментариев пока нет

На нашем сайте Вы найдете значение "Электромиография" в словаре Медицинская эциклопедия, подробное описание, примеры использования, словосочетания с выражением Электромиография, различные варианты толкований, скрытый смысл.

Первая буква "Э". Общая длина 16 символа