Физико-химическая механика

87

раздел современной коллоидной химии (См. Коллоидная химия), изучающий зависимость структурно-механических свойств дисперсных систем (См. Дисперсные системы) и материалов от физико-химических явлений на поверхностях раздела фаз (поверхностных явлений (См. Поверхностные явления)). Ф.-х. М. Возникла в 30–40-х гг. 20 в. И оформилась как самостоятельная научная дисциплина в 50-х гг. Преимущественно благодаря работам сов. Учёных, прежде всего П. А. Ребиндера. Ф.-х. М. Тесно связана с др. Областями коллоидной химии (учением о поверхностных явлениях и поверхностных силах, физико-химией адсорбции (См. Адсорбция) и поверхностно-активных веществ (См. Поверхностно-активные вещества), исследованиями устойчивости дисперсных систем, молекулярно-кинетических, оптических, электрических свойств дисперсных систем), а также с молекулярной физикой (См.

Молекулярная физика), физикой и физико-химией реального твёрдого тела, физико-химией полимерных материалов, реологией (См. Реология), механохимией, с рядом разделов геологических и биологических наук. Объекты изучения Ф.-х. М. – природные дисперсные системы (горные породы и почвы, ткани растений и животных), дисперсные системы в различных технологических процессах (порошки (См. Порошок), Пасты, Суспензии, например промывочные растворы для бурения, Эмульсии, Смазочно-охлаждающие жидкости) и разнообразные материалы, используемые в промышленности (инструментальные, конструкционные, строительные) и в быту. Ф.-х. М. Рассматривает характерное для этих систем и материалов гетерогенное макро- или микронеоднородное строение, в котором проявляется универсальность дисперсного состояния вещества.

Такие системы и материалы состоят из связанных между собой частиц (глобул, зёрен, волокон и др.), весьма разнообразных по размерам, но существенно превышающих размеры отдельных молекул и сохраняющих все основные физико-химические, в том числе механические, свойства данного вещества. Ф.-х. М. Различает следующие основные типы пространственных структур, образуемых частицами, в различных физико-химических условиях. Коагуляционные структуры, в которых взаимодействие частиц ограничивается их соприкосновением – непосредственным (например, в сыпучих структурах) или через остаточные слои дисперсионной среды (в суспензиях и пастах). При этом сила сцепления в контакте (прочность) не превосходит обычно 10-8–10-7 н (10-3–10-2 дин).

Для таких структур характерна механическая обратимость, обусловливающая, в частности, их тиксотропию (См. Тиксотропия). Структуры с фазовыми контактами, развитыми на площади, значительно превосходящей молекулярные размеры. Эти структуры, как правило, механически необратимы, прочность контактов в них 10-7–10-6 н (10-2–10-1 дин) и выше. Фазовые контакты развиваются в различных неорганических и органических, кристаллических и аморфных дисперсных системах и материалах при спекании, прессовании, изотермической перегонке, а также при выделении новой, высокодисперсной фазы в пересыщенных растворах и расплавах, например в минеральных вяжущих и полимерных материалах. Сплошные материалы, в частности металлы и сплавы, можно рассматривать как предельный случай полного срастания зёрен.

Каждая структура характеризуется определённой дисперсностью. Размером частиц и, следовательно, числом контактов на 1 см2 сечения, которое составляет, например, 102–103 для порошков с частицами в десятые доли мм и достигает 1011–1012 для таких высокодисперсных систем, как алюмосиликагели. Ф.-х. М. Рассматривает механические (реологические) свойства – наиболее общие и важные характеристики всех дисперсных систем и материалов в зависимости от их структуры, обусловленной взаимодействием частиц. Таковы вязкость, пластичность, тиксотропное поведение коагуляционных структур с определённой зависимостью сопротивления сдвигу от скорости течения, упруго-пластическое и упруго-хрупкое поведение твердообразных дисперсных систем и материалов (с фазовыми контактами), характеризующихся определённой прочностью, долговечностью, износостойкостью.

Так, в простом случае глобулярной пористой монодисперсной структуры прочность может быть приблизительно равна произведению числа контактов между частицами (на 1 см2 и средней величины силы сцепления в отдельном контакте, изменяясь в зависимости от типа контактов и дисперсности в очень широких пределах (например, от 10 до 108 н/м2. Вместе с тем Ф.-х. М. Устанавливает определяющую роль физико-химических явлений на границах раздела фаз (смачивание, адгезия, адсорбция, изменение величины межфазного натяжения, образование особых граничных слоев) во всех процессах взаимодействия частиц и структурообразования. На этой основе Ф.-х. М. Развивает свои ведущие представления о возможности и эффективности управления структурно-механическими свойствами дисперсных систем и материалов при оптимальном сочетании механических воздействий (например, вибрационных, импульсных) и физико-химических факторов, прежде всего состава среды и малых добавок поверхностно-активных веществ.

Последние, концентрируясь на границах раздела (адсорбируясь на поверхности частиц), позволяют при правильном их выборе радикально изменять свойства данной границы в нужном направлении, обеспечивая хорошее сцепление частиц, либо, наоборот, ослабляя и преодолевая силы сцепления. Так, в лиофобных системах (стеклянные частицы в углеводородных средах, гидрофобизованные поверхности в полярных жидкостях и др.) свободная энергия достигает в коагуляционных контактах десятков эрг/см2, а в лиофильных системах (например, гидрофобизованные монослоями поверхностно-активных веществ полярные частицы в углеводородной среде) составляет сотые доли эрг/см2. В соответствии с явлениями и процессами, рассматриваемыми Ф.-х.

М., можно выделить следующие её основные направления. 1) изучение возникновения и разрушения всевозможных пространственных структур как взаимодействия частиц дисперсной фазы и дисперсионной среды, включая и различные этапы получения материалов (в том числе композиционных) с заданный дисперсной структурой и совокупностью механических и физико-химических характеристик. 2) исследование физико-химического влияния среды и её поверхностно-активных компонентов на механические свойства разнообразных сплошных и пористых твёрдых тел и материалов (Ребиндера эффект), выяснение условий использования эффекта Ребиндера для облегчения обработки материалов и предотвращения его возможного вредного влияния. 3) анализ закономерностей и механизма сцепления поверхностей твёрдых тел (контактных взаимодействий) в условиях граничного трения, износа, смазывающего действия, формирования покрытий и др.

Для Ф.-х. М. Характерно всестороннее изучение структурно-реологических (особенно нелинейных) характеристик дисперсных систем при широком варьировании условий. Напряжённого состояния, температуры, состава среды, пересыщений и др. Непосредственное экспериментальное изучение элементарных актов при контактных взаимодействиях. Разнообразные механические испытания твёрдых тел и материалов в активных средах. Использование математического моделирования (См. Моделирование) и численных методов для описания реологических свойств дисперсных систем и для анализа молекулярного механизма влияния среды. На основе общих принципов Ф.-х. М. Разработаны методы диспергирования и управления свойствами дисперсных систем и различных материалов, широко используемые.

1) в гетерогенных химико-технологических процессах (например, при производстве бумаги, в текстильной и лакокрасочной промышленности, при получении теста и кондитерских масс, топливных композиций и др.). 2) при приготовлении всевозможных материалов, например керамики, катализаторов и сорбентов, разнообразных полимерных материалов, при затворении цементного раствора, подготовке асфальтобетонов, формовочных земель, составлении композиций в порошковой металлургии, закреплении грунтов. 3) для облегчения процессов помола, бурения твёрдых горных пород, измельчения руды перед обогащением, обработки резанием. И наоборот, для повышения стойкости и долговечности конструкционных и др. Материалов в активных средах.

4) для оптимизации контактных взаимодействий, например при обработке металлов давлением, при эксплуатации узлов трения в машинах, механизмах и приборах. Лит. Ребиндер П. А., Физико-химическая механика, М., 1958. Лихтман В. И., Щукин Е. Д., Ребиндер П. А., Физико-химическая механика металлов, М., 1962. Физико-химическая механика дисперсных структур. Сб., М., 1966. Успехи коллоидной химии, М., 1973. Е. Д. Щукин..

Значения в других словарях
Физико-географическое районирование

система территориальных подразделений земной поверхности (регионов), обладающих внутренним единством и своеобразными чертами природы. Процесс их выявления – одна из форм синтеза в физической географии (См. Физическая география). Ф.-г. Р. Можно определить как особый род систематики природных территориальных комплексов и как метод выявления индивидуальной специфики отдельных частей географической оболочки (в то время как типологический подход в физической географии способствует установлению сходс..

Физико-технический институт

имени А. Ф. Иоффе АН СССР (ФТИ), научно-исследовательское учреждение, в котором ведутся исследования в области физики и её технических применений. Создан в 1921 на базе Физико-технического отдела Рентгенологического и радиологического института, организованного в 1918. Находится в Ленинграде. Основателем и первым директором ФТИ был академик А. Ф. Иоффе, в 1957 директором стал академик Б. П. Константинов, с 1967 институт возглавляет академик В. М. Тучкевич. С первых лет существования ФТИ стал шк..

Физико-химический анализ

метод исследования физико-химических систем, посредством которого устанавливают характер взаимодействия компонентов системы на основе изучения соотношений между её физическими свойствами и составом. Основы Ф.-х. А. Заложены в конце 19 в. Дж. Гиббсом, Д. И. Менделеевым, Я. Вант-Гоффом. Развитие этого метода обусловлено работами А. Ле Шателье, Г. Таммана, Х. Розебома и особенно Н. С. Курнакова и его школы. В Ф.-х. А. Измеряют различные физические свойства систем, чаще всего температуры фазовых пе..

Физиогномика

(греч. Physiognomike или physiognomonike – наука о распознании природных задатков по физическим свойствам, от phýsis – природа, природные задатки и gnomonikós – сведущий, проницательный) в науке древности и некоторых позднейших эпох учение о необходимой связи между внешним обликом человека (и любого животного) и его Характером. Ф. Уходит корнями в традицию житейского опыта, с незапамятных времён откладывавшуюся в фольклоре, в преданиях разного рода знахарей, гадателей и т.п. Физиогномические наб..

Физико-химическая Механика

, раздел коллоид-ной химии, изучающий мех. (реологич.) св-ва дисперсных систем и материалов, а также влияние среды на разрушение, деформацию и диспергирование твердых и жидких тел. Ф.-х. М. Возникла в 30-40-х гг. 20 в. И оформилась как самостоят. Научная дисциплина в 50-х гг. В осн. Благодаря работам П. А. Ребиндера. В 1928 им был установлен эффект адсорбционного понижения прочности твердого тела, находящегося в напряженном состоянии вследствие обратимой адсорбции на его пов-сти частиц из окруж..

Физико-химическая Механика

Раздел физической химии и коллоидной химии, в к-ром изучается зависимость структурно-механич. Св-в дисперсных систем от физ.-хим. Явлений на поверхностях раздела фаз, например влияние среды на разрушение твёрдых тел. Ф.-х. М. Возникла в сер. 50-х гг. 20 в. В результате гл. Обр. Работ П. А. Ребиндера. ..

Дополнительный поиск Физико-химическая механика Физико-химическая механика

Добавить комментарий
Комментарии
Комментариев пока нет

На нашем сайте Вы найдете значение "Физико-химическая механика" в словаре Большая Советская энциклопедия, подробное описание, примеры использования, словосочетания с выражением Физико-химическая механика, различные варианты толкований, скрытый смысл.

Первая буква "Ф". Общая длина 26 символа