Рунге - Кутта Метод

73

- одношаговый метод численного решения задачи Коши для системы обыкновенных дифференциальных уравнений вида (1) Основная идея Р.- К. М. Была предложена К. Рунге [1] и развита затем В. Кутта [2] и др. Первоначально эта идея использовалась лишь для построения явных схем Р.- К. М., к-рые разыскивались в виде (2) где при этом значения постоянных Ai, an, bnm, i=l, 2,...,.q. N=2, 3, . ., q. M=1, 2, . ., n-1, определялись из требования, чтобы погрешность равенства (2) на точном решении уравнения (1) имела возможно высокий порядок малости в сравнении с шагом t для любых уравнений вида (1). В отличие от Адамса метода и др. Многошаговых методов, Р.- К. М., как и всякий одношаговый метод, не требует предварительного построения начала таблицы значений приближенного решения и дает возможность вести вычислительный процесс при естественных для уравнения (1) начальных условиях, что позволяет использовать его непосредственно и в случае неравномерных сеток.

Однако поскольку в этом методе не используется информация о решении в предыдущих узлах сетки, то он, вообще говоря, оказывается локально менее экономичным, чем, напр., метод Адамса. Наиболее широко известным (см., напр., [3]) среди Р.- К. М. Является метод принадлежащий зависящему от двух свободных параметров семейству методов четвертого порядка точности вида (2) с q=4. Популярен и простейший явный Р.- К. М. Первого порядка точности, получающийся из (2) при q=1. Этот метод известен под названием м е т о д а Э й л е р а. При значениях q, равных 2 и 3, из (2) могут быть найдены семейства Р.- К. М. Второго и третьего порядка точности, зависящие от одного и двух свободных параметров соответственно. В случае q>.

4 имевшее место ранее соответствие между значением q и порядком точности метода уже нарушается. Р.- К. М. Вида (2) пятого иорядка точности удается построить лишь при q=6, шестого - при q=7, седьмого - при q=9 и т. Д. В этом случае с увеличением значения qна единицу расширение множества подлежащих выбору в (2) постоянных Ai,an, bnm часто оказывается уже недостаточным, чтобы удовлетворить условиям, возникающим из требования повышения на единицу порядка точности явного Р.- К. М. С целью увеличения числа выбираемых в (2) параметров можно рассмотреть, напр., следующее обобщение конструкции одношаговых методов, основанных на идее К. Рунге. (3) Методы вида (2), (3) в общем случае являются уже неявными, что значительно осложняет их численную реализацию.

Величины kn, n=1, 2, . , q, на каждом шаге приходится находить из системы, вообще говоря, нелинейных уравнений (3). Однако за счет достигнутого здесь значительного увеличения числа подлежащих выбору констант такие методы приобретают следующее свойство (см. [4]). Для каждого значения qсуществует неявный Р.- К. М. Порядка точности 2q. Кроме того, при таком расширении класса Р.- К. М. Появляются методы, хорошо ориентированные на случай жестких дифференциальных систем. Имеется еще одно видоизменение (см., напр., [5]) идеи К. Рунге конструирования одношаговых методов численного решения уравнений вида (1). Именно, исходя из (1) записывается равенство Приближенное представление последнего интеграла квадратурной формулой с qузлами дает (4) Если выбор узлов ai и коэффициентов Ai, i=l, 2, .

, q,рассматриваемой квадратурной формулы подчинить условиям (5) то погрешность приближенного равенства (4) будет величиной порядка tp + 1. При система уравнений (5) разрешима и приближенное равенство (4) может быть построено. Аналогично можно записать приближенные равенства для неизвестных величин u(tj+ait), входящих в правую часть (4), при этом требования к их точности могут быть понижены на порядок, и т. Д. В качестве примера так построенного одношагового метода ниже приводится (см. [6]) метод третьего порядка точности предсказывающе-исправляющего характера. Если положить в (4) одно из значений ai- равным единице, на этом пути можно строить также и неявные методы, напр. Метод второго порядка точности.

Рассмотренные выше на примере уравнений вида (1) подходы к построению численных методов могут быть распространены на обыкновенные дифференциальные уравнения высших порядков (см. [6], [7]), а также использованы при конструировании разностных схем в случае дифференциальных уравнений с частными производными . Лит.:[1] R u n g е С., "Math. Ann.", 1895, Bd 46, S. 167- 178. И К u t t a W., "Z. Math, und Phys.", 1901, Bd 46, S. 435-53. [3] Б а х в а л о в Н. С., Численные методы, 2 изд., М., 1975. [4] В u t с h е г J. С., "Math. Сотр.", 1964, v. 18, p. 50-64. [5] Б о б к о в В. В., "Becцi АН БССР. Сер. Фiз.-мат. Навук". 1967, № 4, с. 27-35. [6] К р ы л о в В. И., Б о б к о в В. В., Монастырный П. И., Вычислительные методы, т. 2, М., 1977. [7] К о л л а т ц Л., Численные методы решения дифференциальных уравнений, пер.

С нем., М., 1953. В. В. Бобков..

Значения в других словарях
Ротор

- то же, что вихрь.. ..

Рулетта

- название плоской кривой, рассматриваемой как траектория точки, жестко связанной с некрой кривой, катящейся по другой неподвижной кривой. В случае, когда окружность катится по прямой, Р. Есть циклоида;если окружность катится по окружности - циклоидальная кривая;если по прямой катится гипербола, эллипс или парабола - Штурма кривая. Траектория точки эллипса, катящегося по др. Эллипсу, наз. Э п и э л л и п с о м. Каждая плоская кривая многими способами может быть рассмотрена как Р. Напр., всяка..

Рунге Область

область Рунге первого рода,- область G в пространстве комплексных переменных (z1, . ., zn), обладающая тем свойством, что для любой голоморфной в Gфункции f(z1 . ., zn) существует последовательность многочленов (*) сходящаяся в G к f(zl . ., zn) равномерно на каждом замкнутом ограниченном множестве . Определение P.о. В т о р о г о р о д а получается отсюда заменой .последовательности (*) последовательностью рациональных функций . При n=1 всякая односвязная область является Р. О. Первого ..

Рунге Правило

- один пз методов оценки погрешности формул численного интегрирования. Пусть - остаточный член формулы численного интегрирования, где h - длина отрезка интегрирования или какой-то его части, k - фиксированное число и М - произведение постоянной на производную подинтегральной функции порядка k-1 в какой-то точке промежутка интегрирования. Если J - точное значение интеграла, а I - его приближенное значение, то Согласно Р. П. Вычисляется тот же самый интеграл по той же формуле численного интег..

Дополнительный поиск Рунге - Кутта Метод Рунге - Кутта Метод

Добавить комментарий
Комментарии
Комментариев пока нет

На нашем сайте Вы найдете значение "Рунге - Кутта Метод" в словаре Математическая энциклопедия, подробное описание, примеры использования, словосочетания с выражением Рунге - Кутта Метод, различные варианты толкований, скрытый смысл.

Первая буква "Р". Общая длина 19 символа